
NI-488.2™
NI-488.2 User Manual 
for Windows
NI-488.2 User Manual for Windows
February 1999 Edition
Part Number 321819C-01



725 11, 
Worldwide Technical Support and Product Information

http://www.natinst.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, 
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 0 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, India 91805275406, 
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, 
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, 
Spain (Madrid) 91 640 0085, Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00, 
Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix of this manual.

© Copyright 1998, 1999 National Instruments Corporation. All rights reserved.



 Important Information
 
enced 
do not 
riod. 

ide 
 costs 

y 
serves 
The 
le for 

 
nal 
rranty 

follow 
 
s, 

nical, 
hout 

se in 
orm 
 

or by 
rom 
roducts 
or 
ucts 

, 
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that 
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefull
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. 
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liab
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL  INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS 
ANY WARRANTY OF MERCHANTABILITY  OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED 
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL  INSTRUMENTS SHALL BE LIMITED  TO THE AMOUNT THERETOFORE PAID BY THE 
CUSTOMER. NATIONAL  INSTRUMENTS WILL  NOT BE LIABLE  FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, 
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of 
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. Natio
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The wa
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to 
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partie
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
HS488™, natinst.com™, NI-488™, NI-488.2™, and TNT4882™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing for a level of reliability suitable for u
or in connection with surgical implants or as critical components in any life support systems whose failure to perf
can reasonably be expected to cause significant injury to a human. Applications of National Instruments products
involving medical or clinical treatment can create a potential for death or bodily injury caused by product failure, 
errors on the part of the user or application designer. Because each end-user system is customized and differs f
National Instruments testing platforms and because a user or application designer may use National Instruments p
in combination with other products in a manner not evaluated or contemplated by National Instruments, the user 
application designer is ultimately responsible for verifying and validating the suitability of National Instruments prod
whenever National Instruments products are incorporated in a system or application, including, without limitation
the appropriate design, process and safety level of such system or application.



Contents
ii

-1

2

-2
-3
-4
-6
-7
7
9
10
-10
12
13
-14
14
15
16
-17

18
18
-18
18
19
-19
19
19
About This Manual
Overview of the NI-488.2 Documentation ....................................................................xi
Conventions ...................................................................................................................xii
Related Documentation..................................................................................................x

Chapter 1
Introduction

Setting up and Configuring Your System......................................................................1
Controlling More Than One Interface.............................................................1-2
Configuration Requirements ...........................................................................1-

Chapter 2
Measurement & Automation Explorer

Overview........................................................................................................................2-1
Starting Measurement & Automation Explorer.............................................................2
Getting Started with NI-488.2 .......................................................................................2
Troubleshoot NI-488.2 Problems ..................................................................................2
Scan for GPIB Instruments ............................................................................................2
Communicate with a GPIB Instrument..........................................................................2

Query/Read/Write Communication.................................................................2-
Advanced Communication ..............................................................................2-
About Instrument Communication..................................................................2-

Adding a New GPIB Instrument....................................................................................2
View NI-488.2 Software Version ..................................................................................2-
Monitor, Record, and Display NI-488.2 Calls...............................................................2-
View or Change GPIB Interface Settings ......................................................................2

Under Windows 98/95.....................................................................................2-
Under Windows NT ........................................................................................2-

View GPIB Instrument Information ..............................................................................2-
Change GPIB Device Templates ...................................................................................2

Under Windows 98/95.....................................................................................2-
Under Windows NT ........................................................................................2-

Enable/Disable NI-488.2 DOS Support.........................................................................2
Under Windows 98/95.....................................................................................2-
Under Windows NT ........................................................................................2-

Access Additional Help and Resources for NI-488.2 and GPIB...................................2
NI-488.2 Online Help......................................................................................2-
National Instruments GPIB Web Site..............................................................2-
© National Instruments Corporation v NI-488.2 User Manual for Windows



Contents

0
20
20
0

-1
-3
3
3

-6
-6

8
-8

-9

0
0

-11
-13
3
3

13
14
4

17
GPIB-ENET Network Settings (Windows 98/95 Only) ............................................... 2-2
Assign IP Address........................................................................................... 2-
Configure Advanced IP Settings..................................................................... 2-
Update GPIB-ENET Firmware....................................................................... 2-2

Chapter 3
Developing Your NI-488.2 Application

Simple Instrument Control ............................................................................................ 3
Interactive Instrument Control ...................................................................................... 3
Choosing Your Programming Methodology ................................................................. 3-

Choosing a Method to Access the NI-488.2 Driver........................................ 3-
NI-488.2 Language Interfaces .......................................................... 3-4
Direct Entry Access .......................................................................... 3-4

Choosing How to Use the NI-488.2 API ........................................................ 3-4
Communicating with a Single GPIB Device.................................... 3-4
Using Multiple Interfaces and/or Multiple Devices ......................... 3-5

Checking Status with Global Variables......................................................................... 3
Status Word (ibsta).......................................................................................... 3
Error Variable (iberr) ...................................................................................... 3-7
Count Variables (ibcnt and ibcntl) .................................................................. 3-8

Using Interactive Control to Communicate with Devices............................................. 3-
Programming Models .................................................................................................... 3

Applications That Communicate with a Single GPIB Device........................ 3-8
Items to Include ................................................................................ 3-8
General Program Steps and Examples.............................................. 3

Applications That Use Multiple Interfaces or Communicate with 
Multiple GPIB Devices ................................................................................ 3-1

Items to Include ................................................................................ 3-1
General Program Steps and Examples.............................................. 3

Language-Specific Programming Instructions .............................................................. 3
Microsoft Visual C/C++ (Version 2.0 or Later) ............................................. 3-1
Borland C/C++ (Version 4.0 or Later)............................................................ 3-1
Visual Basic (Version 4.0 or Later) ................................................................ 3-
Direct Entry with C ......................................................................................... 3-

gpib-32.dll Exports ........................................................................... 3-1
Directly Accessing the gpib-32.dll Exports...................................... 3-15

Running Existing NI-488.2 Applications ...................................................................... 3-
Running Existing Win32 and Win16 NI-488.2 Applications ......................... 3-17
Running Existing DOS NI-488.2 Applications Under Windows 98/95 ......... 3-17
Running Existing DOS NI-488.2 Applications under Windows NT.............. 3-18
NI-488.2 User Manual for Windows vi © National Instruments Corporation



Contents

-2
-3
-3
-4

-5
-5
5

-
-3
-3
-3
-
5-4

-1
-5
5
6
-6
-6

-1
-12
Chapter 4
Debugging Your Application

NI Spy ............................................................................................................................4-1
Global Status Variables .................................................................................................4
Existing Applications.....................................................................................................4
NI-488.2 Error Codes ....................................................................................................4
Configuration Errors ......................................................................................................4
Timing Errors.................................................................................................................4-4
Communication Errors...................................................................................................4

Repeat Addressing...........................................................................................4
Termination Method........................................................................................4-

Other Errors ...................................................................................................................4-6

Chapter 5
NI Spy Utility

Overview........................................................................................................................5-1
Starting NI Spy ..............................................................................................................51
Using the NI Spy Online Help .......................................................................................5
Locating Errors with NI Spy..........................................................................................5
Viewing Properties for Recorded Calls .........................................................................5
Exiting NI Spy ...............................................................................................................54
Performance Considerations ..........................................................................................

Chapter 6
Interactive Control Utility

Overview........................................................................................................................6-1
Getting Started with Interactive Control........................................................................6
Interactive Control Syntax .............................................................................................6

Number Syntax................................................................................................6-
String Syntax ...................................................................................................6-
Address Syntax................................................................................................6

Interactive Control Commands......................................................................................6
Status Word....................................................................................................................6-11
Error Information...........................................................................................................62
Count Information..........................................................................................................6
© National Instruments Corporation vii NI-488.2 User Manual for Windows



Contents

-1
-2

-2
3
4

5

-11
-11

-12
-12
3

13
3

5
6

17
Chapter 7
NI-488.2 Programming Techniques

Termination of Data Transfers ...................................................................................... 7
High-Speed Data Transfers (HS488)............................................................................. 7

Enabling HS488 .............................................................................................. 7
System Configuration Effects on HS488 ........................................................ 7-

Waiting for GPIB Conditions........................................................................................ 7-
Asynchronous Event Notification in Win32 NI-488.2 Applications ............................ 7-4

Calling the ibnotify Function .......................................................................... 7-4
ibnotify Programming Example...................................................................... 7-

Writing Multithreaded Win32 NI-488.2 Applications .................................................. 7-9
Device-Level Calls and Bus Management .................................................................... 7
Talker/Listener Applications ......................................................................................... 7
Serial Polling .................................................................................................................7-12

Service Requests from IEEE 488 Devices...................................................... 7
Service Requests from IEEE 488.2 Devices................................................... 7
Automatic Serial Polling................................................................................. 7-1

Stuck SRQ State ............................................................................... 7-
Autopolling and Interrupts................................................................ 7-1

SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls......... 7-14
SRQ and Serial Polling with Multi-Device NI-488.2 Calls............................ 7-15

Example 1: Using FindRQS ............................................................. 7-1
Example 2: Using AllSpoll............................................................... 7-1

Parallel Polling .............................................................................................................. 7-17
Implementing a Parallel Poll........................................................................... 7-

Parallel Polling with Traditional NI-488.2 Calls.............................. 7-17
Parallel Polling with Multi-Device NI-488.2 Calls .......................... 7-19

Appendix A
GPIB Basics

Appendix B
Status Word Conditions

Appendix C
Error Codes and Solutions

Appendix D
Windows 98/95: Troubleshooting and Common Questions
NI-488.2 User Manual for Windows viii © National Instruments Corporation



Contents

-1

2
3
-4
5
5
-6
8
8

11
12
-13
-14
5
6
17

-2
2

-2

-2
3

Appendix E
Windows NT: Troubleshooting and Common Questions

Appendix F
Technical Support Resources

Glossary

Index

Figures
Figure 1-1. Linear and Star System Configuration ..................................................1
Figure 1-2. Example of Multiboard System Configuration .....................................1-2

Figure 2-1. Measurement & Automation Explorer ..................................................2-
Figure 2-2. Select View Documentation..................................................................2-
Figure 2-3. Select Getting Started Wizard ...............................................................2
Figure 2-4. Select NI-488.2 Troubleshooting Wizard .............................................2-
Figure 2-5. NI-488.2 Troubleshooting Wizard ........................................................2-
Figure 2-6. Select Scan for Instruments...................................................................2
Figure 2-7. Select Communicate with Instrument ...................................................2-
Figure 2-8. NI-488.2 Communicator .......................................................................2-
Figure 2-9. Select Interactive Control Utility ..........................................................2-9
Figure 2-10. Scan for New Instrument After Scanning .............................................2-
Figure 2-11. Select About Measurement & Automation Explorer ............................2-
Figure 2-12. Select NI Spy.........................................................................................2
Figure 2-13. Select Properties ....................................................................................2
Figure 2-14. View Interface Information under Windows 98/95 ..............................2-1
Figure 2-15. View Interface Information under Windows NT ..................................2-1
Figure 2-16. GPIB Instrument Information ...............................................................2-

Figure 3-1. Select Communicate with Instrument ...................................................3
Figure 3-2. NI-488.2 Communicator .......................................................................3-

Figure 4-1. Select NI Spy.........................................................................................4

Figure 5-1. Select NI Spy.........................................................................................5
Figure 5-2. NI Spy Application................................................................................5-
© National Instruments Corporation ix NI-488.2 User Manual for Windows



Contents

-2

-6

1

-3
3

Figure 6-1. Select Interactive Control Utility .......................................................... 6-2

Figure A-1. GPIB Address Bits ................................................................................ A

Tables
Table 3-1. Status Word Layout ............................................................................. 3

Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls in 
Interactive Control ............................................................................... 6-7

Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls in 
Interactive Control ............................................................................... 6-8

Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control .......... 6-9
Table 6-4. Auxiliary Functions in Interactive Control .......................................... 6-1

Table A-1. GPIB Handshake Lines......................................................................... A
Table A-2. GPIB Interface Management Lines ..................................................... A-
NI-488.2 User Manual for Windows x © National Instruments Corporation



About This Manual
are 

se 

 

 
lso 

t 
s 

 

This manual describes the features and functions of the NI-488.2 softw
for Windows. 

Overview of the NI-488.2 Documentation
All of the NI-488.2 documentation is available on the NI-488.2 for 
Windows CD. The following documents can help you learn about and u
the NI-488.2 software and GPIB hardware.

• The Getting Started card briefly describes how to install your NI-488.2
software and GPIB hardware.

• The NI-488.2 User Manual for Windows describes the features and 
functions of the NI-488.2 software for Windows.

• The NI-488.2 Function Reference Manual for Windows describes the 
NI-488.2 API.

• The GPIB Hardware Guide contains detailed instructions about how
to configure and install your GPIB hardware. The hardware guide a
includes hardware and software specifications and compliance 
information.

You can access each of these documents online by inserting your NI-488.2 
for Windows CD and selecting the View Documentation option from the 
autorun menu. You can also view documentation at the National 
Instruments web site, www.natinst.com/manuals/ .

• The online NI-488.2 Help addresses questions you might have abou
NI-488.2 and includes troubleshooting information and description
of the NI-488.2 API.

To access the NI-488.2 online help, first open Measurement & 
Automation Explorer by selecting Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Then, expand the Devices 
and Interfaces item, select a GPIB interface, right-click, and select
NI-488.2 Help.
© National Instruments Corporation xi NI-488.2 User Manual for Windows



About This Manual

ions 

, 

7
ne 

ction 
ord 

the 
ples. 
ries, 
ions, 

puter 
ode 

as 
Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box opt
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software
such as menu items and dialog box options. Bold text also denotes 
parameter names.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-198
IEEE 488.2 and the ANSI/IEEE Standard 488.2-1992, respectively, which defi

the GPIB.

italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text that is a placeholder for a w
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from 
keyboard, sections of code, programming examples, and syntax exam
This font is also used for the proper names of disk drives, paths, directo
programs, subprograms, subroutines, device names, functions, operat
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the com
automatically prints to the screen. This font also emphasizes lines of c
that are different from the other examples.

Related Documentation
The following documents contain information that you may find helpful 
you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface 
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, 
Protocols, and Common Commands
NI-488.2 User Manual for Windows xii © National Instruments Corporation



© National Instruments Corporation 1-1 NI-488.2 User Ma
1

r at 
on, 
1-1 
Introduction

This chapter explains how to set up your GPIB system.

Setting up and Configuring Your System
Devices are usually connected with a cable assembly consisting of a 
shielded 24-conductor cable with both a plug and receptacle connecto
each end. With this design, you can link devices in a linear configurati
a star configuration, or a combination of the two configurations. Figure
shows the linear and star configurations.

Figure 1-1.  Linear and Star System Configuration

Device A

Device B

Device C

Device DDevice A

Device CDevice B

a. Linear Configuration b. Star Configuration
nual for Windows



Chapter 1 Introduction

 

, 
nce 
Controlling More Than One Interface
Figure 1-2 shows an example of a multiboard system configuration. gpib0  
is the access interface for the voltmeter, and gpib1  is the access interface
for the plotter and printer. The control functions of the devices 
automatically access their respective interfaces.

Figure 1-2.  Example of Multiboard System Configuration

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed for
you must limit the number of devices on the bus and the physical dista
between devices. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an 
average separation of 2 m over the entire bus.

• A maximum total cable length of 20 m.

• A maximum of 15 devices connected to each bus, with at least 
two-thirds powered on.

One
GPIB

Another
GPIB

Digital
Voltometer

Plotter

Printer

gpib0

gpib1
NI-488.2 User Manual for Windows 1-2 © National Instruments Corporation



Chapter 1 Introduction

 of 

ble.

 
evice 
For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths must be as short as possible with up to a maximum
15 m of cable for each system.

• There must be at least one equivalent device load per meter of ca

If you want to exceed these limitations, you can use a bus extender to
increase the cable length or a bus expander to increase the number of d
loads. You can order bus extenders and expanders from National 
Instruments.
© National Instruments Corporation 1-3 NI-488.2 User Manual for Windows



© National Instruments Corporation 2-1 NI-488.2 User Ma
2

 

e.
Measurement & Automation 
Explorer

This chapter describes Measurement & Automation Explorer, 
an interactive utility you can use with the NI-488.2 software.

To open Measurement & Automation Explorer, select Start» 
Programs»National Instruments NI-488.2»Explore GPIB.

Overview
You can perform the following GPIB-related tasks in Measurement & 
Automation Explorer:

• Establish basic communication with your GPIB instruments.

• Scan for instruments connected to your GPIB interface.

• Launch the NI-488.2 Getting Started Wizard to get started with 
GPIB instrument communication.

• Launch the NI-488.2 Troubleshooting Wizard to troubleshoot GPIB
and NI-488.2 problems.

• Launch NI Spy to monitor NI-488.2 or VISA API calls to GPIB 
interfaces.

• View information about your GPIB hardware and NI-488.2 softwar

• Reconfigure the GPIB interface settings.

• Locate additional help resources for GPIB and NI-488.2.
nual for Windows



Chapter 2 Measurement & Automation Explorer
Starting Measurement & Automation Explorer
To start Measurement & Automation Explorer, select Start» 
Programs»National Instruments NI-488.2»Explore GPIB. Figure 2-1 
shows Measurement & Automation Explorer.

Figure 2-1.  Measurement & Automation Explorer
NI-488.2 User Manual for Windows 2-2 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

r.

m 

r 

 

Getting Started with NI-488.2
The NI-488.2 Getting Started Wizard helps you get started with GPIB 
instrument communication using Measurement & Automation Explore

The general steps to get started with NI-488.2 are as follows:

1. Install the NI-488.2 software and GPIB hardware by following the 
instructions on your Getting Started card.

If you do not have a Getting Started card, select the View 
Documentation option from the NI-488.2 for Windows CD autorun 
screen, as shown in Figure 2-2. Then, select your operating syste
and GPIB interface.

Figure 2-2.  Select View Documentation

2. Verify the installation and establish basic communication with you
GPIB instruments using the NI-488.2 Getting Started Wizard.

To run the Getting Started Wizard, select Measurement & 
Automation in the left window frame of Measurement & Automation
Explorer, then choose Help»Getting Started»NI-488.2 Getting 
Started Wizard, as shown in Figure 2-3.

Note The NI-488.2 Getting Started Wizard runs automatically after you install the 
NI-488.2 for Windows software and restart you system.
© National Instruments Corporation 2-3 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

d 

 

Figure 2-3.  Select Getting Started Wizard

The Getting Started Wizard guides you through the process of 
verifying installation and establishing communication with your 
instrument. Follow the steps outlined by the Getting Started Wizar
by clicking on the items in the list as they are highlighted.

3. Start to use NI-488.2:

• Run an existing NI-488.2 application, or 

• Develop a new NI-488.2 application.

Troubleshoot NI-488.2 Problems
To troubleshoot NI-488.2 problems, run the NI-488.2 Troubleshooting
Wizard. Select Measurement & Automation in the left window 
frame of Measurement & Automation Explorer, then choose Help» 
Troubleshooting»NI-488.2 Troubleshooting Wizard, as shown in 
Figure 2-4.
NI-488.2 User Manual for Windows 2-4 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

 
y 
Figure 2-4.  Select NI-488.2 Troubleshooting Wizard

Figure 2-5 show the Troubleshooting Wizard after it has tested a GPIB
interface. You can access online help for the Troubleshooting Wizard b
clicking on the Help button.

Figure 2-5.  NI-488.2 Troubleshooting Wizard
© National Instruments Corporation 2-5 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

 

 

IB 
t they 
Scan for GPIB Instruments
To scan for connected GPIB instruments, follow these steps:

1. Make sure that your instrument is connected to the GPIB interface
and powered on.

2. Select the GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer, right-click,
and choose Scan for Instruments, as shown in Figure 2-6.

Figure 2-6.  Select Scan for Instruments

Each instrument that is found is listed in the right window frame.

Note If the message Instruments not Found  appears in the right window frame, Scan 
for Instruments failed because it did not find any instruments. Make sure that your GP
instruments are properly connected to the GPIB interface with a GPIB cable and tha
are powered on, then repeat the Scan for Instruments.
NI-488.2 User Manual for Windows 2-6 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

ter 
 
er. 
n this 

trol 
n, 

ribed 

t 
 

Note If the message Instruments Enumeration Failed  appears in the right window 
frame, Scan for Instruments found too many Listeners on the GPIB. You might encoun
this message if you have a running GPIB Analyzer with the GPIB handshake option
enabled. To fix this problem, disable the GPIB handshake option in the GPIB Analyz
You might also encounter this message if you have a GPIB extender in your system. I
case, Scan for Instruments cannot detect any instruments connected to your GPIB 
interface. You can verify communication with the instruments using the Interactive Con
utility. To view the Interactive Control utility help on verifying instrument communicatio
select the GPIB interface under Devices and Interfaces in the left window frame of 
Measurement & Automation Explorer, right-click, and choose Interactive Control . Then, 
type help "Interactive Control:getting started" .

Communicate with a GPIB Instrument

Query/Read/Write Communication
To establish basic communication with a GPIB instrument using the 
NI-488.2 Communicator, follow these steps:

1. Make sure that you have already scanned for instruments as desc
in the previous section, Scan for GPIB Instruments.

2. Start the NI-488.2 Communicator by selecting the GPIB instrumen
in the right window frame of Measurement & Automation Explorer,
right-clicking, and choosing Communicate with Instrument, 
as shown in Figure 2-7.
© National Instruments Corporation 2-7 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer
Figure 2-7.  Select Communicate with Instrument

Figure 2-8 shows the NI-488.2 Communicator.

Figure 2-8.  NI-488.2 Communicator
NI-488.2 User Manual for Windows 2-8 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

 

, 

 

 

3. Choose Query to write a command to the instrument then read a 
response back. Choose Write  to write a command to the instrument.
Or, choose Read to read a response from the instrument.

Advanced Communication
For more advanced interactive communication with GPIB instruments
run the Interactive Control utility by following these steps:

1. Select the GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer, right-click,
and choose Interactive Control , as shown in Figure 2-9.

Figure 2-9.  Select Interactive Control Utility

2. Type in NI-488.2 API calls interactively to communicate with the 
GPIB instrument in the Interactive Control utility. For example, you
might use ibdev , ibclr , ibwrt , ibrd , and ibonl . Type in help  to 
view the online help for Interactive Control.
© National Instruments Corporation 2-9 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

 

 

r, 

and 

n 

rface 
n 
About Instrument Communication
Refer to the documentation that came with your GPIB instrument for a
description of the commands that your instrument understands. Most 
instruments respond to the *IDN?  command by returning an identification
string.

Adding a New GPIB Instrument
To add a new GPIB instrument in Measurement & Automation Explore
follow these steps:

1. Make sure that your instrument is connected to the GPIB interface 
powered on.

2. Scan for connected GPIB instruments. For help, refer to the sectio
Scan for GPIB Instruments.

Each instrument that is powered on and connected to the selected inte
is listed in the right window frame. Figure 2-10 shows a successful sca
where two instruments were detected.
NI-488.2 User Manual for Windows 2-10 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

IB 
t they 

ter 
 
er. 
n this 

trol 
n, 
Figure 2-10.  Scan for New Instrument After Scanning

Note If the message Instruments not Found  appears in the right window frame, Scan 
for Instruments failed because it did not find any instruments. Make sure that your GP
instruments are properly connected to the GPIB interface with a GPIB cable and tha
are powered on, then repeat the Scan for Instruments.

Note If the message Instruments Enumeration Failed  appears in the right window 
frame, Scan for Instruments found too many Listeners on the GPIB. You might encoun
this message if you have a running GPIB Analyzer with the GPIB handshake option
enabled. To fix this problem, disable the GPIB handshake option in the GPIB Analyz
You might also encounter this message if you have a GPIB extender in your system. I
case, Scan for Instruments cannot detect any instruments connected to your GPIB 
interface. You can verify communication with the instruments using the Interactive Con
utility. To view the Interactive Control utility help on verifying instrument communicatio
select the GPIB interface under Devices and Interfaces in the left window frame of 
Measurement & Automation Explorer, right-click, and choose Interactive Control . Then, 
type help "Interactive Control:getting started" .
© National Instruments Corporation 2-11 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

.

View NI-488.2 Software Version
To view the NI-488.2 software version, follow these steps:

1. Select Measurement & Automation in the left window frame of 
Measurement & Automation Explorer, then choose Help»About 
Measurement & Automation Explorer, as shown in Figure 2-11.

Figure 2-11.  Select About Measurement & Automation Explorer

2. In the About Measurement & Automation Explorer dialog box, 
click on the System Info button.

3. Select the Software tab.

• The Name column displays the name of the software.

• The Type column displays operating system information.

• The Value column displays the version number of the software

• The Description column displays additional information.
NI-488.2 User Manual for Windows 2-12 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

 

py.

e 
Monitor, Record, and Display NI-488.2 Calls
To monitor NI-488.2 calls, run NI Spy by following these steps:

1. Select a GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer, right-click,
and choose NI Spy, as shown in Figure 2-12.

Figure 2-12.  Select NI Spy

2. Start a capture by clicking on the blue arrow on the toolbar of NI S

3. Refer to the NI Spy online help for more information. To access th
NI Spy online help, select Help from the NI Spy menu.
© National Instruments Corporation 2-13 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

 

View or Change GPIB Interface Settings

Under Windows 98/95
To view or change GPIB interface information, follow these steps:

1. To open the Configuration utility, select a GPIB interface under 
Devices and Interfaces in the left window frame of Measurement &
Automation Explorer, right-click, and choose Properties, as shown in 
Figure 2-13.

Figure 2-13.  Select Properties
NI-488.2 User Manual for Windows 2-14 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

r 

 

Figure 2-14 shows the NI-488.2 Configuration utility Properties page for 
an AT-GPIB/TNT (Plug and Play) interface.

Figure 2-14.  View Interface Information under Windows 98/95

You can use the NI-488.2 Configuration utility to change the settings fo
your interface. To view the online help, click on the ? button in the 
upper-right corner of the dialog box, then click on the item you need 
help with.

Under Windows NT
To view or change GPIB interface information, follow these steps:

1. Select a GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer, right-click,
and choose Properties, as shown in Figure 2-13.
© National Instruments Corporation 2-15 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

r 

 so. 
Figure 2-15 shows the NI-488.2 Configuration utility.

Figure 2-15.  View Interface Information under Windows NT

2. Select the correct GPIB interface and click on Configure.

You can use the NI-488.2 Configuration utility to change the settings fo
your interface. To view the online help, click on the Help button.

View GPIB Instrument Information
To view GPIB instrument information, follow these steps:

1. Scan for connected GPIB instruments, if you have not already done
For help, refer to the section Scan for GPIB Instruments.

2. Select the GPIB interface listed under Devices and Interfaces in the 
left window frame of Measurement & Automation Explorer.

3. View the instrument information in the right window frame of 
Measurement & Automation Explorer, as shown in Figure 2-16.
NI-488.2 User Manual for Windows 2-16 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

ed 

le, 

 

Figure 2-16.  GPIB Instrument Information

• The Name column displays the logical instrument name assign
by Measurement & Automation Explorer.

• The Type column display the instrument’s response to the 
identification query (*IDN? ).

• The Value column display the primary (PAD) and secondary 
(SAD) addresses of the instrument.

• The Description column identifies the instrument as a GPIB 
instrument.

Change GPIB Device Templates
For older NI-488.2 applications, you might need to modify one of the 
device templates to find a given GPIB instrument by name, for examp
ibfind("fluke45" ). These older applications still use ibfind  instead 
of the preferred ibdev  NI-488.2 call to get a device handle. New 
applications should avoid using ibfind  to obtain device handles and use
ibdev  instead. ibdev  allows you to dynamically configure your GPIB 
© National Instruments Corporation 2-17 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer

me 

se 

e 

 

 in 
device handle and frees the application from unneccessary device na
requirements.

If you must modify a device template, follow these steps.

Under Windows 98/95
To reconfigure GPIB device templates under Windows 98/95, follow the
steps:

1. Launch the Windows 98/95 Device Manager.

a. Select Start»Settings»Control Panel.

b. Double-click on the System icon.

c. Select the Device Manager tab.

2. Select National Instruments GPIB Interfaces.

3. Click on the Properties button.

4. Select the Device Templates tab.

5. Use the context-sensitive help for more information.

Under Windows NT
To reconfigure GPIB device templates under Windows NT, follow thes
steps:

1. Select a GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer, right-click,
and choose Properties to launch the NI-488.2 Configuration utility.

2. Change the GPIB device templates. Use the online help, available
the NI-488.2 Configuration utility, for more information.

Enable/Disable NI-488.2 DOS Support 

Under Windows 98/95
To enable NI-488.2 DOS support under Windows 98/95, follow these 
steps:

1. Select a GPIB interface under Devices and Interfaces in the left 
window frame of Measurement & Automation Explorer.

2. Select Tools»Settings»NI-488.2.

3. Enable or disable DOS support in the NI-488.2 Settings dialog box.
NI-488.2 User Manual for Windows 2-18 © National Instruments Corporation



Chapter 2 Measurement & Automation Explorer

ps:

ked 
iew 
Under Windows NT
To enable NI-488.2 DOS support under Windows NT, follow these ste

1. Open your config.nt  file, located in the Windows NT system32 
directory (for example, c:\windows\system32 ).

2. Find the following lines of code:

REM ***To run DOS GPIB applications, uncomment the

REM ***following line

REM device=< path >\doswin16\gpib-nt.com

where <path > is the directory in which you installed the NI-488.2 
software.

3. Remove REM from the last line so that it reads 

device=< path >\doswin16\gpib-nt.com

To disable DOS support, add REM back to the line of code where it was 
removed.

Access Additional Help and Resources for NI-488.2 
and GPIB

NI-488.2 Online Help
The NI-488.2 online help includes information on getting started, 
troubleshooting, application development, and answers to frequently as
questions, as well as a complete NI-488.2 API function reference. To v
the NI-488.2 online help, from Measurement & Automation Explorer, 
select a GPIB interface in the left window frame under Devices and 
Interfaces, right-click, and choose NI-488.2 Help.

National Instruments GPIB Web Site
To access the National Instruments web site for GPIB, from Measurement 
& Automation Explorer , select the Measurement & Automation icon, 
then select Help»National Instruments on the Web»GPIB Home Page.
© National Instruments Corporation 2-19 NI-488.2 User Manual for Windows



Chapter 2 Measurement & Automation Explorer
GPIB-ENET Network Settings (Windows 98/95 Only)

Assign IP Address
Note The Assign IP Address utility requires that you have network administrator 
knowledge. Please contact your network administrator before running this utility.

1. In Measurement & Automation Explorer, select a GPIB-ENET 
interface under Devices and Interfaces in the left window frame, 
right-click, and choose Assign IP Address.

2. Use the Assign IP Address utility to assign the IP address.

Use the online help, available in the Assign IP Address utility, 
for more information.

Configure Advanced IP Settings
Note The Advanced IP Settings utility requires that you have network administrator 
knowledge. Please contact your network administrator before running this utility.

1. In Measurement & Automation Explorer, select a GPIB-ENET 
interface under Devices and Interfaces in the left window frame, 
right-click, and choose Advanced IP Settings.

2. Use the Advanced IP Settings utility to assign subnet information.

Use the online help, available in the Advanced IP Settings utility, 
for more information.

Update GPIB-ENET Firmware
1. In Measurement & Automation Explorer, select a GPIB-ENET 

interface under Devices and Interfaces in the left window frame, 
right-click, and choose Update Firmware.

2. Use the Update Firmware utility to update firmware. 

Use the online help, available in the Update Firmware utility, 
for more information.
NI-488.2 User Manual for Windows 2-20 © National Instruments Corporation



© National Instruments Corporation 3-1 NI-488.2 User Ma
3

e 

ribed 

n 
Developing Your NI-488.2 
Application

This chapter explains how to develop an NI-488.2 application using th
NI-488.2 API.

Simple Instrument Control
To establish basic communication with a GPIB instrument using the 
NI-488.2 Communicator, follow these steps:

1. Make sure that you have already scanned for instruments, as desc
in the section Scan for GPIB Instruments in Chapter 2, Measurement 
& Automation Explorer.

2. To start the NI-488.2 Communicator, select the GPIB instrument i
the right window frame of Measurement & Automation Explorer, 
right-click, and choose Communicate with Instrument, as shown 
in Figure 3-1.
nual for Windows



Chapter 3 Developing Your NI-488.2 Application
Figure 3-1.  Select Communicate with Instrument

Figure 3-2 shows the NI-488.2 Communicator application.

Figure 3-2.  NI-488.2 Communicator
NI-488.2 User Manual for Windows 3-2 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

ck, 

ing 
 
or 
at 
 

er 

le 
 

r 
, you 

ct 
3. To use the NI-488.2 Communicator, choose Query to write a 
command to the instrument then automatically read a response ba
choose Write  to write a command to the instrument, or choose Read 
to read a response from the instrument.

Click on the Show Sample button to view sample C/C++ code that 
performs a simple query of a GPIB instrument.

Interactive Instrument Control
Before you begin writing your application, you might want to use the 
Interactive Control utility to communicate with your instruments 
interactively by typing in commands from the keyboard rather than issu
them from an application. You can use the Interactive Control utility to
learn to communicate with your instruments using the NI-488.2 API. F
specific device communication instructions, refer to the user manual th
came with your instrument. For information about using the Interactive
Control utility and detailed examples, refer to Chapter 6, Interactive 
Control Utility.

To start Interactive Control, launch Measurement & Automation Explor
by selecting Start»Programs»National Instruments NI-488.2»Explore 
GPIB. Then, select the GPIB interface under Devices and Interfaces in the 
left window frame, right-click, and choose Interactive Control

To establish simple communication, use the calls modeled in the samp
provided by the NI-488.2 Communicator. The first NI-488.2 API call to
make is ibdev . After that, you can use ibwrt  and ibrd  to send commands 
to and read responses from the GPIB instrument. Finally, use ibonl  to put 
the device handle offline when you are finished. Refer to Chapter 6, 
Interactive Control Utility, for more information.

Choosing Your Programming Methodology
Based on your development environment, you can select a method fo
accessing the driver, and based on your NI-488.2 programming needs
can choose how to use the NI-488.2 API.

Choosing a Method to Access the NI-488.2 Driver
Applications can access the NI-488.2 dynamic link library (DLL), 
gpib-32.dll , either by using an NI-488.2 language interface or by dire
access.
© National Instruments Corporation 3-3 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

ft 

hat 
 
nd 

ds. 

 can 
n. 

u 
 

ation 

nal 

ional 
NI-488.2 Language Interfaces
You can use a language interface if your program is written in Microso
Visual C/C++ (2.0 or later), Borland C/C++ (4.0 or later), or Microsoft 
Visual Basic (4.0 or later). Otherwise, you must access gpib-32.dll  
directly.

Direct Entry Access
You can access the DLL directly from any programming environment t
allows you to request addresses of variables and functions that a DLL
exports. gpib-32.dll  exports pointers to each of the global variables a
all the NI-488.2 calls.

Choosing How to Use the NI-488.2 API
The NI-488.2 API has two subsets of calls to meet your application nee
Both of these sets, the traditional calls and the multi-device calls, are 
compatible across computer platforms and operating systems, so you
port programs to other platforms with little or no source code modificatio
For most applications, the traditional NI-488.2 calls are sufficient. If yo
have a complex configuration with one or more interfaces and multiple
devices, use the multi-device NI-488.2 calls. Whichever option you 
choose, bus management operations necessary for device communic
are performed automatically.

The following sections describe some differences between the traditio
NI-488.2 calls and the multi-device NI-488.2 calls.

Communicating with a Single GPIB Device
If your system has only one device attached to each interface, the tradit
NI-488.2 calls are probably sufficient for your programming needs. A 
typical NI-488.2 application with a single device has three phases:

• Initialization: use ibdev  to get a handle and use ibclr  to clear the 
device.

• Device Communication: use ibwrt , ibrd , ibtrg  , ibrsp , and 
ibwait  to communicate with the device.

• Cleanup: use ibonl  to put the handle offline.

Refer to the sample applications that are installed with the NI-488.2 
software to see detailed examples for different GPIB device types. 
NI-488.2 User Manual for Windows 3-4 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

 

 
 

ess 
s 
trol 

e 

ion 

ices, 
ks 

d 

 

For NI-488.2 applications that need to control the GPIB in non-typical 
ways, for example, to communicate with non-compliant GPIB devices,
there are a set of low-level functions that perform rudimentary GPIB 
applications. If you use these functions, you need to understand GPIB
management details like how to address talkers and listeners. Refer to
Appendix A, GPIB Basics, for some details on GPIB management. 

The set of low-level functions are called board-level functions. They acc
the interface directly and require you to handle the addressing and bu
management protocol. These functions give you the flexibility and con
to handle situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices.

• Altering various low-level interface configurations.

• Managing the bus in non-typical ways.

Board-level functions that an NI-488.2 application might use include th
following: ibcmd , ibrd , ibwrt , and ibconfig . For a detailed list, refer 
to the NI-488.2 online help, available through Measurement & Automat
Explorer. To start Measurement & Automation Explorer, select Start» 
Programs»National Instruments NI-488.2»Explore GPIB. Then, select 
a GPIB interface under Devices and Interfaces, right-click, and choose 
NI-488.2 Help to view the online help.

Using Multiple Interfaces and/or Multiple Devices
When your system includes an interface that must access multiple dev
use the multi-device NI-488.2 calls, which can perform the following tas
with a single call:

• Find the Listeners on the bus using FindLstn .

• Find a device requesting service using FindRQS.

• Determine the state of the SRQ line, or wait for SRQ to be asserte
using TestSRQ or WaitSRQ.

• Address multiple devices to receive a command using SendList .

You can mix board-level traditional NI-488.2 calls with the multi-device
NI-488.2 calls to have access to all the NI-488.2 functionality.
© National Instruments Corporation 3-5 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

s of 
s are 

 

h of 

alue 

g. If 

 is 

 
iled 
Checking Status with Global Variables
Each NI-488.2 API call updates four global variables to reflect the statu
the device or interface that you are using. These global status variable
the status word (ibsta ), the error variable (iberr ), and the count 
variables (ibcnt  and ibcntl ). They contain useful information about the
performance of your application. Your application should check these 
variables after each NI-488.2 call. The following sections describe eac
these global variables and how you can use them in your application.

Note If your application is a multithreaded application, refer to the section Writing 
Multithreaded Win32 NI-488.2 Applications in Chapter 7, NI-488.2 Programming 
Techniques. 

Status Word (ibsta)
All NI-488.2 calls update a global status word, ibsta , which contains 
information about the state of the GPIB and the GPIB hardware. The v
stored in ibsta  is the return value of all the traditional NI-488.2 calls, 
except ibfind  and ibdev . You can examine various status bits in ibsta  
and use that information to make decisions about continued processin
you check for possible errors after each call using the ibsta  ERR bit, 
debugging your application is much easier.

ibsta  is a 16-bit value. A bit value of one (1) indicates that a certain 
condition is in effect. A bit value of zero (0) indicates that the condition
not in effect. Each bit in ibsta  can be set for device-level traditional 
NI-488.2 calls (dev), board-level traditional NI-488.2 calls and 
multi-device NI-488.2 calls (brd), or all (dev, brd). 

Table 3-1 shows the condition that each bit position represents, the bit
mnemonics, and the type of calls for which the bit can be set. For a deta
explanation of each status condition, refer to Appendix B, Status Word 
Conditions. 

Table 3-1.  Status Word Layout

Mnemonic
Bit 
Pos

Hex 
Value Type Description

ERR 15 8000 dev, brd NI-488.2 error 

TIMO 14 4000 dev, brd Time limit exceeded 

END 13 2000 dev, brd END or EOS detected 
NI-488.2 User Manual for Windows 3-6 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

 

 

 

in 
The language header file defines each of the ibsta  status bits. You can test
for an ibsta  status bit being set using the bitwise and  operator (& in 
C/C++). For example, the ibsta  ERR bit is bit 15 of ibsta . 

To check for an NI-488.2 error, use the following statement after each
NI-488.2 call:

if (ibsta & ERR)

printf("NI-488.2 error encountered");

Error Variable (iberr)
If the ERR bit is set in ibsta , an NI-488.2 error has occurred. When an
error occurs, the error type is specified by iberr . To check for an NI-488.2 
error, use the following statement after each NI-488.2 call:

if (ibsta & ERR)

printf("NI-488.2 error %d encountered", iberr);

Note The value in iberr  is meaningful as an error type only when the ERR bit is set 
ibsta , indicating that an error has occurred. 

SRQI 12 1000 brd SRQ interrupt received 

RQS 11 800 dev Device requesting 
service

CMPL 8 100 dev, brd I/O completed 

LOK 7 80 brd Lockout State 

REM 6 40 brd Remote State 

CIC 5 20 brd Controller-In-Charge 

ATN 4 10 brd Attention is asserted 

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State 

DCAS 0 1 brd Device Clear State

Table 3-1.  Status Word Layout (Continued)

Mnemonic
Bit 
Pos

Hex 
Value Type Description
© National Instruments Corporation 3-7 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

r 4, 

ld 

t 

 an 

fic 
with 
ity 

d 

our 
For more information about error codes and solutions, refer to Chapte
Debugging Your Application, or Appendix C, Error Codes and Solutions.

Count Variables (ibcnt and ibcntl)
The count variables are updated after each read, write, or command 
function. In Win32 applications, ibcnt  and ibcntl  are 32-bit integers. 
On some systems, like MS-DOS, ibcnt  is a 16-bit integer, and ibcntl  is 
a 32-bit integer. For cross-platform compatibility, all applications shou
use ibcntl . If you are reading data, the count variables indicate the 
number of bytes read. If you are sending data or commands, the coun
variables reflect the number of bytes sent.

Using Interactive Control to Communicate with Devices
Before you begin writing your application, you might want to use the 
Interactive Control utility to communicate with your instruments 
interactively by typing in commands from the keyboard rather than from
application. You can use the Interactive Control utility to learn to 
communicate with your instruments using the NI-488.2 API. For speci
device communication instructions, refer to the user manual that came 
your instrument. For information about using the Interactive Control util
and detailed examples, refer to Chapter 6, Interactive Control Utility.

Programming Models

Applications That Communicate with a Single GPIB Device
This section describes items you should include in your application an
provides general program steps with an NI-488.2 example. 

Items to Include
Include the following items in your application:

• Header files—In a C application, include the header files windows.h  
and decl-32.h . The standard Windows header file, windows.h , 
contains definitions used by decl-32.h , and decl-32.h  contains 
prototypes for the NI-488.2 calls and constants that you can use in y
application. 

• Error checking—Check for errors after each NI-488.2 call. 
NI-488.2 User Manual for Windows 3-8 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

ion. 

 

m 

ser 

ent 

 the 

se 

 

• Error handling—Declare and define a function to handle NI-488.2 
errors. This function takes the device offline and closes the applicat
If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then, your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("NI-488.2 error");

}

General Program Steps and Examples
The following steps show you how to use the device-level traditional 
NI-488.2 calls in your application. The NI-488.2 software includes the 
source code for an example written in C, devquery.c , and the source code
for the example written to use direct entry to access gpib-32.dll , 
dlldevquery.c . The NI-488.2 software also includes a sample progra
written in Visual Basic, devquery.frm . 

Initialization

Step 1. Open a Device
Use ibdev  to open a device handle. The ibdev  function requires the 
following parameters:

• Connect board index (typically 0, for GPIB0).

• Primary address for the GPIB instrument (refer to the instrument u
manual or use the FindLstn  function to dynamically determine the 
GPIB address of your GPIB device, as described in Step 2. Determine 
the GPIB Address of Your Device in the section Applications That Use 
Multiple Interfaces or Communicate with Multiple GPIB Devices later 
in this chapter).

• Secondary address for the GPIB instrument (0 if the GPIB instrum
does not use secondary addressing).

• Timeout period (typically set to T10s, which is 10 seconds).

• End-of-transfer mode (typically set to 1 so that EOI is asserted with
last byte of writes).

• EOS detection mode (typically 0 if the GPIB instrument does not u
EOS characters).

A successful ibdev  call returns a device handle, ud, that is used for all 
device-level traditional NI-488.2 calls that communicate with the GPIB
instrument.
© National Instruments Corporation 3-9 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

s to 

rning 
our 

cate 

n.

d 

our 
Step 2. Clear the Device
Use ibclr  to clear the device. This resets the device’s internal function
the default state.

Device Communication
Step 3. Communicate with the Device
Communicate with the device by sending it the "*IDN?"  query and then 
reading back the response. Many devices respond to this query by retu
a description of the device. Refer to the documentation that came with y
GPIB device to see specific instructions on the proper way to communi
with it.

Step 3a.
Use ibwrt  to send the "*IDN?"  query command to the device.

Step 3b.
Use ibrd  to read the response from the device.

Continue communicating with the GPIB device until you are finished.

Cleanup
Step 4. Place the Device Offline before Exiting Your Application
Use ibonl  to put the device handle offline before you exit the applicatio

Applications That Use Multiple Interfaces or Communicate with 
Multiple GPIB Devices

This section describes items you should include in your application an
provides general program steps with an NI-488.2 example. 

Items to Include
Include the following items in your application:

• Header files—In a C application, include the header files windows.h  
and decl-32.h . The standard Windows header file, windows.h , 
contains definitions used by decl-32.h , and decl-32.h  contains 
prototypes for the NI-488.2 calls and constants that you can use in y
application. 

• Error checking—Check for errors after each NI-488.2 call. 
NI-488.2 User Manual for Windows 3-10 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

ion. 

lls 
 an 
e 

al 

IB 

e 

hat 
 then 
ll 
 GPIB 
hen 
• Error handling—Declare and define a function to handle NI-488.2 
errors. This function takes the device offline and closes the applicat
If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("NI-488.2 error");

}

General Program Steps and Examples
The following steps show you how to use the multi-device NI-488.2 ca
in your application. The NI-488.2 software includes the source code for
example written in C, 4882query.c , and the source code for the exampl
written to use direct entry to access the gpib-32.dll , dll4882query.c . 
The NI-488.2 software also includes a sample program written in Visu
Basic, query4882.frm . 

Initialization

Step 1. Become Controller-In-Charge (CIC)
Use SendIFC  to initialize the bus and the GPIB interface so that the GP
interface is Controller-In-Charge (CIC). The only argument of SendIFC  is 
the GPIB interface number, typically 0 for GPIB0.

Step 2. Determine the GPIB Address of Your Device
Use FindLstn  to find all the devices attached to the GPIB. The FindLstn  
function requires the following parameters:

• Interface number (typically 0, for GPIB0).

• A list of primary addresses, terminated with the NOADDR constant.

• A list for reported GPIB addresses of devices found listening on th
GPIB.

• Limit, which is the number of the GPIB addresses to report.

Use FindLstn  to test for the presence of all of the primary addresses t
are passed to it. If a device is present at a particular primary address,
the primary address is stored in the GPIB addresses list. Otherwise, a
secondary addresses of the given primary address are tested, and the
address of any devices found are stored in the GPIB addresses list. W
you have the list of GPIB addresses, you can determine which one 
corresponds to your instrument and use it for subsequent calls.
© National Instruments Corporation 3-11 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

se in 
 that 
ss in 
ry 
alue 
ss is 

nt 
 

 by 
ame 
o 

ffer 
Alternately, if you already know your GPIB device’s primary and 
secondary address, you can create an appropriate GPIB address to u
subsequent NI-488.2 calls, as follows: a GPIB address is a 16-bit value
contains the primary address in the low byte and the secondary addre
the high byte. If you are not using secondary addressing, the seconda
address is 0. For example, if the primary address is 1, then the 16-bit v
is 0x01; otherwise, if the primary address is 1 and the secondary addre
0x67, then the 16-bit value is 0x6701.

Step 3. Initialize the Devices
Use DevClearList  to clear the devices on the GPIB. The first argume
is the GPIB interface number. The second argument is the list of GPIB
addresses that were found to be listening as determined in Step 2.

Device Communication
Step 4. Communicate with the Devices
Communicate with the devices by sending them the "*IDN?"  query and 
then reading back the responses. Many devices respond to this query
returning a description of the device. Refer to the documentation that c
with your GPIB devices to see specific instruction on the proper way t
communicate with them.

Step 4a.
Use SendList  to send the "*IDN?"  query command to multiple GPIB 
devices. The address is the list of GPIB devices to be queried. The bu
that you pass to SendList  is the command message to the device.

Step 4b.
Use Receive  for each device to read the responses from each device.

Continue communicating with the GPIB devices until you are finished.

Cleanup
Step 5. Place the Interface Offline before Exiting Your Application
Use ibonl  to put the interface offline before you exit the application.
NI-488.2 User Manual for Windows 3-12 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

r 

 as 
ual 
t & 
Language-Specific Programming Instructions
The following sections describe how to develop, compile, and link you
Win32 NI-488.2 applications using various programming languages. 

Microsoft Visual C/C++ (Version 2.0 or Later)
Before you compile your Win32 C application, make sure that the 
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog  in a DOS 
shell, type the following on the command line:

cl cprog.c gpib-32.obj

Borland C/C++ (Version 4.0 or Later)
Before you compile your Win32 C application, make sure that the 
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog  in a DOS 
shell, type the following on the command line:

bcc32 -w32 cprog.c borlandc_gpib-32.obj

Visual Basic (Version 4.0 or Later)
With Visual Basic, you can access the traditional NI-488.2 calls as 
subroutines, using the BASIC keyword CALL followed by the traditional 
NI-488.2 call name, or you can access them using the il  set of functions. 
With some of the NI-488.2 calls (for example ibrd  and Receive ), the 
length of the string buffer is automatically calculated within the actual 
function or subroutine, which eliminates the need to pass in the length
an extra parameter. For more information about function syntax for Vis
Basic, refer to the NI-488.2 online help, available through Measuremen
Automation Explorer. To start Measurement & Automation Explorer, 
select Start»Programs»National Instruments NI-488.2»Explore GPIB. 
Then, select a GPIB interface under Devices and Interfaces, right-click, 
and choose NI-488.2 Help to view the online help.
© National Instruments Corporation 3-13 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

 
o 

e 

t 

 
II 

d 

 

Before you run your Visual Basic application, include the niglobal.bas  
and vbib-32.bas  files in your application project file.

Direct Entry with C
The following sections describe how to use direct entry with C.

gpib-32.dll Exports
gpib-32.dll  exports pointers to the global variables and all of the 
NI-488.2 calls. Pointers to the global variables (ibsta , iberr , ibcnt , and 
ibcntl ) are accessible through these exported variables:

int *user_ibsta;

int *user_iberr;

int *user_ibcnt;

long *user_ibcntl;

Except for the functions ibbna , ibfind , ibrdf , and ibwrtf , all 
the NI-488.2 call names are exported from gpib-32.dll . Thus, to use 
direct entry to access a particular function and to get a pointer to the 
exported function, you just need to call GetProcAddress  passing the 
name of the function as a parameter. For more information about the 
parameters to use when you invoke the function, refer to the NI-488.2
online help, available through Measurement & Automation Explorer. T
start Measurement & Automation Explorer, select Start»Programs» 
National Instruments NI-488.2»Explore GPIB. Then, select a GPIB 
interface under Devices and Interfaces, right-click, and choose NI-488.2 
Help to view the online help.

The functions ibbna , ibfind , ibrdf , and ibwrtf  all require an 
argument that is a name. ibbna  requires an interface name, ibfind  
requires an interface or device name, and ibrdf  and ibwrtf  require a file 
name. Because Windows NT supports both normal (8-bit) and Unicod
(16-bit) characters, gpib-32.dll  exports both normal and Unicode 
versions of these functions. Because Windows 98/95 does not suppor
16-bit wide characters, use only the 8-bit ASCII versions, named ibbnaA , 
ibfindA , ibrdfA , and ibwrtfA . The Unicode versions are named 
ibbnaW , ibfindW , ibrdfW , and ibwrtfW . You can use either the Unicode
or ASCII versions of these functions with Windows NT, but only the ASC
versions with Windows 98/95.

In addition to pointers to the status variables and a handle to the loade
gpib-32.dll , you must define the direct entry prototypes for the 
functions you use in your application. The prototypes for each function
NI-488.2 User Manual for Windows 3-14 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

e 
ss 
e 

r 

s 

elp, 

at 
exported by gpib-32.dll  are described in the NI-488.2 online help. Th
direct entry sample programs illustrate how to use direct entry to acce
gpib-32.dll . For more information about direct entry, refer to the onlin
help that is built into your development environment.

Directly Accessing the gpib-32.dll Exports
Make sure that the following lines are included at the beginning of you
application:

#ifdef __cplusplus

extern "C"{

#endif

#include <windows.h>

#include "decl-32.h"

#ifdef __cplusplus

}

#endif

In your Win32 application, you need to load gpib-32.dll  before 
accessing the gpib-32.dll  exports. The following code fragment show
you how to call the LoadLibrary  function to load gpib-32.dll  and 
check for an error:

HINSTANCE Gpib32Lib = NULL;

Gpib32Lib=LoadLibrary("GPIB-32.DLL");

if (Gpib32Lib == NULL) {

   return FALSE;

}

The prototypes for each function can be found in the NI-488.2 online h
available through Measurement & Automation Explorer. To start 
Measurement & Automation Explorer, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Then, select a GPIB interface 
under Devices and Interfaces, right-click, and choose NI-488.2 Help to 
view the online help. For functions that return an integer value, like ibdev  
or ibwrt , the pointer to the function needs to be cast as follows:

int (_stdcall *Pname)

where *Pname is the name of the pointer to the function. For functions th
do not return a value, like FindLstn  or SendList , the pointer to the 
function needs to be cast as follows:

void (_stdcall *Pname)
© National Instruments Corporation 3-15 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

ed 
elp, 

 
es of 
where *Pname is the name of the pointer to the function. They are follow
by the function’s list of parameters as described in the NI-488.2 online h
available through Measurement & Automation Explorer. To start 
Measurement & Automation Explorer, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Then, select a GPIB interface 
under Devices and Interfaces, right-click, and choose NI-488.2 Help to 
view the online help. Below is an example of how to cast the function 
pointer and how the parameter list is set up for ibdev  and ibonl  functions:

int (_stdcall *Pibdev)(int ud, int pad, int sad, int tmo, 

int eot, int eos);

int (_stdcall *Pibonl)(int ud, int v);

Next, your Win32 application needs to use GetProcAddress  to get the 
addresses of the global status variables and functions your application
needs. The following code fragment shows you how to get the address
the pointers to the status variables and any functions your application 
needs:

/* Pointers to NI-488.2 global status variables */

int *Pibsta;          

int *Piberr;

long *Pibcntl;

static int(__stdcall *Pibdev)

(int ud, int pad, int sad, int tmo, int eot, 

 int eos);

static int(__stdcall *Pibonl)

(int ud, int v);

Pibsta = (int *) GetProcAddress(Gpib32Lib, 

(LPCSTR)"user_ibsta");

Piberr = (int *) GetProcAddress(Gpib32Lib, 

(LPCSTR)"user_iberr");

Pibcntl = (long *) GetProcAddress(Gpib32Lib, 

(LPCSTR)"user_ibcnt");

Pibdev = (int (__stdcall *)

(int, int, int, int, int, int)) 

GetProcAddress(Gpib32Lib, (LPCSTR)"ibdev");

Pibonl = (int (__stdcall *)(int, int)) 

GetProcAddress(Gpib32Lib, (LPCSTR)"ibonl");

If GetProcAddress  fails, it returns a NULL pointer. The following 
code fragment shows you how to verify that none of the calls to 
GetProcAddress  failed:

if ((Pibsta  == NULL) ||

    (Piberr  == NULL) ||
NI-488.2 User Manual for Windows 3-16 © National Instruments Corporation



Chapter 3 Developing Your NI-488.2 Application

her 
call 

fer 

 

    (Pibcntl == NULL) ||

    (Pibdev  == NULL) ||

    (Pibonl  == NULL)) {

   /* Free the GPIB library */

   FreeLibrary(Gpib32Lib);

   printf("GetProcAddress failed.");

}

Your Win32 application needs to dereference the pointer to access eit
the status variables or function. The following code shows you how to 
a function and access the status variable from within your application:

dvm = (*Pibdev) (0, 1, 0, T10s, 1, 0);

if (*Pibsta & ERR) {

   printf("Call failed");

}

Before exiting your application, you need to free gpib-32.dll  with the 
following command:

FreeLibrary(Gpib32Lib);

For more examples of directly accessing gpib-32.dll , refer to the direct 
entry sample programs dlldevquery.c  and dll4882query.c , installed 
with the NI-488.2 software. For more information about direct entry, re
to the online help that is built into your development environment.

Running Existing NI-488.2 Applications

Running Existing Win32 and Win16 NI-488.2 Applications
The NI-488.2 software includes the necessary components to allow 
existing Win32 and Win16 NI-488.2 applications to run properly.

Running Existing DOS NI-488.2 Applications Under Windows 98/95
Make sure that no older version of the NI-488.2 DOS device driver is 
loaded from your config.sys  file, a file located on the boot drive of your
computer. The older NI-488.2 DOS device driver is loaded with the 
following command line:

device= path /gpib.com 
© National Instruments Corporation 3-17 NI-488.2 User Manual for Windows



Chapter 3 Developing Your NI-488.2 Application

 

 

where path  is the directory in which you installed the NI-488.2 DOS 
software (for example, c:\at-gpib ). Delete this command line to ensure
that the older NI-488.2 DOS driver does not load.

To configure the NI-488.2 software to run your existing DOS NI-488.2 
applications, complete the following steps after you install the NI-488.2
software and GPIB hardware.

First, start Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. To enable 
NI-488.2 DOS support under Windows 98/95, follow these steps:

1. Select a GPIB interface under Devices and Interfaces in 
Measurement & Automation Explorer.

2. Select Tools»Settings»NI-488.2.

3. Enable or disable DOS support in the NI-488.2 Software Settings 
dialog box.

You can now run your existing DOS NI-488.2 applications.

Running Existing DOS NI-488.2 Applications under Windows NT
To run DOS NI-488.2 applications, you must enable NI-488.2 DOS 
support under Windows NT. To enable NI-488.2 DOS support under 
Windows NT, follow these steps:

1. Open your config.nt  file, located in the Windows NT system32 
directory (for example, c:\windows\system32 ).

2. Find the following lines of code:

REM ***To run DOS GPIB applications, uncomment the

REM ***following line

REM device=< path >\doswin16\gpib-nt.com

where <path > is the directory in which you installed the NI-488.2 
software.

3. Remove REM from the last line so that it reads 

device=< path >\doswin16\gpib-nt.com

To disable DOS support, add REM back to the line of code where it was 
removed.
NI-488.2 User Manual for Windows 3-18 © National Instruments Corporation



© National Instruments Corporation 4-1 NI-488.2 User Ma
4

ing 
Debugging Your Application

This chapter describes several ways to debug your application.

NI Spy
The NI Spy utility monitors NI-488.2 API calls made by NI-488.2 
applications. It records NI-488.2 API input and output values from all 
Win32, Win16, and DOS NI-488.2 applications. For more information 
about NI Spy, refer to its online help by selecting Help from the NI Spy 
menu.

To start NI Spy, launch Measurement & Automation Explorer by select
Start»Programs»National Instruments NI-488.2»Explore GPIB. Then, 
select a GPIB interface under Devices and Interfaces in the left window 
frame, right-click, and choose NI Spy as shown in Figure 4-1.
nual for Windows



Chapter 4 Debugging Your Application

all. 

e 

ou 

& 
Figure 4-1.  Select NI Spy

Global Status Variables
At the end of each NI-488.2 call, the global status variables (ibsta , 
iberr , ibcnt , and ibcntl ) are updated. If you are developing an 
NI-488.2 application, you should check for errors after each NI-488.2 c
If a NI-488.2 call failed, the high bit of ibsta  (the ERR bit) is set. For a 
failed NI-488.2 call, iberr  contains a value that defines the error. In som
error cases, the value in ibcntl  contains even more error information.

You can use NI Spy to determine which NI-488.2 call is failing. Once y
know which NI-488.2 call fails, refer to Appendix B, Status Word 
Conditions, and Appendix C, Error Codes and Solutions, for help 
understanding why the NI-488.2 call failed. This information is also 
available in the NI-488.2 online help, available through Measurement 
Automation Explorer. To start Measurement & Automation Explorer, 
select Start»Programs»National Instruments NI-488.2»Explore GPIB. 
NI-488.2 User Manual for Windows 4-2 © National Instruments Corporation



Chapter 4 Debugging Your Application

an 

ing 

r 
ou 

& 

ible 
Then, select a GPIB interface under Devices and Interfaces, right-click, 
and choose NI-488.2 Help to view the online help.

Existing Applications
If the application does not have built-in error detection handling, you c
use NI Spy to determine which NI-488.2 call is failing.

To start NI Spy, launch Measurement & Automation Explorer by select
Start»Programs»National Instruments NI-488.2»Explore GPIB. Then, 
select a GPIB interface under Devices and Interfaces in the left window 
frame, right-click, and choose NI Spy.

After you have an NI Spy capture file, you can use NI Spy to search fo
failed NI-488.2 calls by searching for calls with the ERR bit set. Once y
know which NI-488.2 call fails, refer to Appendix B, Status Word 
Conditions, and Appendix C, Error Codes and Solutions, for help 
understanding why the NI-488.2 call failed. This information is also 
available in the NI-488.2 online help, available through Measurement 
Automation Explorer. To start Measurement & Automation Explorer, 
select Start»Programs»National Instruments NI-488.2» Explore 
GPIB. Then, select a GPIB interface under Devices and Interfaces in the 
left window frame, right-click, and choose NI-488.2 Help to view the 
online help.

NI-488.2 Error Codes
The error variable is meaningful only when the ERR bit in the status 
variable, ibsta , is set. For a detailed description of each error and poss
solutions, refer to Appendix C, Error Codes and Solutions.
© National Instruments Corporation 4-3 NI-488.2 User Manual for Windows



Chapter 4 Debugging Your Application

 
e 

 

g 
to 
is 

 

our 
r by 
en 
ate 
 
 the 
n 
ors 
Configuration Errors
Several applications require customized configuration of the NI-488.2 
driver. For example, you might want to terminate reads on a special 
end-of-string character, or you might require secondary addressing. In
these cases, you can either reconfigure from your application using th
ibconfig  function or reconfigure using the NI-488.2 Configuration 
utility. 

Note National Instruments recommends using ibconfig  to modify the configuration.

If your application uses ibconfig , it works properly regardless of the 
previous configuration. For more information about using ibconfig , refer 
to the description of ibconfig  in the NI-488.2 online help, available 
through Measurement & Automation Explorer. To start Measurement &
Automation Explorer, select Start»Programs»National Instruments 
NI-488.2»Explore GPIB. Then, select a GPIB interface under Devices 
and Interfaces in the left window frame, right-click, and choose NI-488.2 
Help to view the online help.

Timing Errors
If your application fails, but the same calls issued interactively in the 
Interactive Control utility are successful, your program might be issuin
the NI-488.2 calls too quickly for your device to process and respond 
them. This problem can also result in corrupted or incomplete data. Th
should only be a problem with older, non-standard GPIB devices.

To check if your interactively issued NI-488.2 calls succeed, use the 
Interactive Control utility. To start the Interactive Control utility, select a
GPIB interface under Devices and Interfaces in the left window frame of 
Measurement & Automation Explorer, right-click, and choose Interactive 
Control .

A well-behaved IEEE 488 device does not experience timing errors. If y
device is not well-behaved, you can test for and resolve the timing erro
single-stepping through your program and inserting finite delays betwe
each NI-488.2 call. One way to do this is to have your device communic
its status whenever possible. Although this method is not possible with
many devices, it is usually the best option. Your delays are controlled by
device and your application can adjust itself and work independently o
any platform. Other delay mechanisms probably exhibit differing behavi
on different platforms and thus might not eliminate timing errors. 
NI-488.2 User Manual for Windows 4-4 © National Instruments Corporation



Chapter 4 Debugging Your Application

rent 
ir 
PIB 
 

tly 
g 

ses. 
nd 

nd 
ng 
 

Communication Errors
The following sections describe communication errors you might 
encounter in your application.

Repeat Addressing
Devices adhering to the IEEE 488.2 standard should remain in their cur
state until specific commands are sent across the GPIB to change the
state. However, some devices require GPIB addressing before any G
activity. Therefore, you might need to configure your NI-488.2 driver to
perform repeat addressing if your device does not remain in its curren
addressed state. You can either reconfigure from your application usin
ibconfig , or reconfigure using the NI-488.2 Configuration utility.

Note National Instruments recommends using ibconfig  to modify the configuration.

If your application uses ibconfig , it works properly regardless of the 
previous configuration. For more information about ibconfig , refer to the 
description of ibconfig  in the NI-488.2 online help, available through 
Measurement & Automation Explorer. To start Measurement & 
Automation Explorer, select Start»Programs»National Instruments 
NI-488.2»Explore GPIB. Then, select a GPIB interface under Devices 
and Interfaces in the left window frame, right-click, and choose NI-488.2 
Help to view the online help.

Termination Method
You should be aware of the data termination method that your device u
By default, your NI-488.2 software is configured to send EOI on writes a
terminate reads on EOI or a specific byte count. If you send a comma
string to your device and it does not respond, it might not be recognizi
the end of the command. In that case, you need to send a termination
message, such as <CR> <LF>, after a write command, as follows:

ibwrt(dev,"COMMAND\x0A\x0D",9);
© National Instruments Corporation 4-5 NI-488.2 User Manual for Windows



Chapter 4 Debugging Your Application

 

rer, 
Other Errors
If you experience other errors in your application, refer to the NI-488.2
online help, available through Measurement & Automation Explorer. 
It includes extensive troubleshooting information and the answers to 
frequently asked questions. To start Measurement & Automation Explo
select Start»Programs»National Instruments NI-488.2»Explore GPIB. 
Then, select a GPIB interface under Devices and Interfaces in the left 
window frame, right-click, and choose NI-488.2 Help to view the 
online help.
NI-488.2 User Manual for Windows 4-6 © National Instruments Corporation



© National Instruments Corporation 5-1 NI-488.2 User Ma
5

ds 

ing 
NI Spy Utility

This chapter introduces you to NI Spy, a utility that monitors and recor
multiple National Instruments APIs (for example, NI-488.2 and VISA).

Overview
NI Spy monitors, records, and displays the NI-488.2 calls made from 
Win32, Win16, and DOS NI-488.2 applications. It is a useful tool for 
troubleshooting errors in your application and for verifying that the 
communication with your GPIB instrument is correct.

Starting NI Spy
To start NI Spy, launch Measurement & Automation Explorer by select
Start»Programs»National Instruments NI-488.2»Explore GPIB. Then, 
select a GPIB interface under Devices and Interfaces in the left window 
frame, right-click, and select NI Spy, as shown in Figure 5-1.
nual for Windows



Chapter 5 NI Spy Utility

lt, 

 

Figure 5-1.  Select NI Spy 

When you launch NI Spy, it displays the main NI Spy window. By defau
capture is off. Start capture by clicking on the blue arrow button in the 
NI Spy toolbar. Then, start the NI-488.2 application that you want to 
monitor. NI Spy records all NI-488.2 calls made. Figure 5-2 shows the
main NI Spy window with several recorded calls.
NI-488.2 User Manual for Windows 5-2 © National Instruments Corporation



Chapter 5 NI Spy Utility

es 

n in 
hich 

 

 

Figure 5-2.  NI Spy Application

Using the NI Spy Online Help
The NI Spy utility has built-in, context-sensitive online help that describ
all NI Spy features. To access it, select Help from the NI Spy menu. You 
can also access the online help by clicking on the question mark butto
the NI Spy toolbar, and then clicking on the area of the screen about w
you have a question.

Locating Errors with NI Spy
All NI-488.2 calls returned with an error are displayed in red within the
main NI Spy window.

Viewing Properties for Recorded Calls
To see the detailed properties of any call recorded in the main NI Spy
window, double-click on the call. The Call Properties window appears. 
It contains general, input, output, and buffer information.
© National Instruments Corporation 5-3 NI-488.2 User Manual for Windows



Chapter 5 NI Spy Utility

ured 

elect 

nd 
han 
 or 
of 
ly 
Exiting NI Spy
When you exit NI Spy, its current configuration is saved and used to 
configure NI Spy when you start it again. Unless you save the data capt
in NI Spy before you exit, that information is lost.

To save the captured data, click on the red X button on the toolbar and s
File»Save As to save the data in a .spy  file. After you save your data, 
select File»Exit to exit the NI Spy utility.

Performance Considerations
NI Spy can slow down the performance of your NI-488.2 application, a
certain configurations of NI Spy have a larger impact on performance t
others. For example, configuring NI Spy to record calls to an output file
to use full buffers might have a significant impact on the performance 
both your application and your system. For this reason, use NI Spy on
while you are debugging your application or in situations where 
performance is not critical.
NI-488.2 User Manual for Windows 5-4 © National Instruments Corporation



© National Instruments Corporation 6-1 NI-488.2 User Ma
6

 

r 

 
t, 

nd 
ur 

t a 

er 
Interactive Control Utility

This chapter introduces you to the Interactive Control utility, which lets
you communicate with GPIB devices interactively.

Overview
With the Interactive Control utility, you communicate with the GPIB 
devices through functions you interactively type in at the keyboard. Fo
specific information about communicating with your particular device, 
refer to the documentation that came with the device. You can use the
Interactive Control utility to practice communication with the instrumen
troubleshoot problems, and develop your application.

The Interactive Control utility helps you to learn about your instrument a
to troubleshoot problems by displaying the following information on yo
screen after you enter a command:

• Results of the status word (ibsta ) in hexadecimal notation.

• Mnemonic constant of each bit set in ibsta.

• Mnemonic value of the error variable (iberr ) if an error exists 
(the ERR bit is set in ibsta ).

• Count value for each read, write, or command function.

• Data received from your instrument.

Getting Started with Interactive Control
This section shows you how to use the Interactive Control utility to tes
sequence of NI-488.2 calls.

To start Interactive Control, launch Measurement & Automation Explor
by selecting Start»Programs»National Instruments NI-488.2»Explore 
GPIB. From the Explorer, select a GPIB interface under Devices and 
Interfaces in the left window frame, right-click, and select Interactive 
Control , as shown in Figure 6-1.
nual for Windows



Chapter 6 Interactive Control Utility

er 

 for 
Figure 6-1.  Select Interactive Control Utility

When the Interactive Control utility starts, it displays the following bann
message:

Interactive Control

Copyright 1999 National Instruments Corporation

All rights reserved

Type 'help' for help or 'q' to quit

:

First, you must open either an interface handle or device handle to use
further NI-488.2 calls. Use ibdev  to open a device handle, ibfind  to open 
an interface handle, or the set 488.2  command to switch to a 
488.2 prompt. For help on any Interactive Control command, type in help  
followed by the command, for example help ibdev  or help set .
NI-488.2 User Manual for Windows 6-2 © National Instruments Corporation



Chapter 6 Interactive Control Utility

o 
sage, 

 
 can 

IB 
If you want to use device-level calls, open a device handle using ibdev . 
The following example shows you how to use ibdev  to open a device, 
assign it to access interface gpib0 , choose a primary address of 6 with n
secondary address, set a timeout of 10 seconds, enable the END mes
and disable the EOS mode:

: ibdev

enter board index:  0

enter primary address:  6

enter secondary address:  0

enter timeout:  T10s

enter ‘EOI on last byte’ flag:  1

enter end-of-string mode/byte:  0

ud0:

If you enter a command and no parameters, you are prompted for the
necessary arguments. If you already know the required arguments, you
enter them from the command line, as follows:

: ibdev 0 6 0 T10s 1 0

ud0:

If you do not know the GPIB primary and secondary address of your GP
instrument, use the FindLstn  call as follows:

set 488.2 n

where n is the index of your GPIB interface.

Use SendIFC  to become controller-in-charge:

488.2(0): SendIFC

Next, use FindLstn  to find all the Listeners on the GPIB:

488.2(0): FindLstn 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30

The call returns the number of listeners found in ibcnt  and then lists the 
found listeners:

count: 1

count is the number of listeners found

Listeners: 5
© National Instruments Corporation 6-3 NI-488.2 User Manual for Windows



Chapter 6 Interactive Control Utility

her 

nd 

ing:
Once you successfully complete ibdev , you have a ud prompt. The new 
prompt, ud0 , represents a device-level handle that you can use for furt
NI-488.2 calls. To clear the device, use ibclr , as follows:

ud0: ibclr

[0100] (cmpl)

To write data to the device, use ibwrt . Make sure that you refer to the 
documentation that came with your GPIB instrument for specific comma
messages.

ud0:  ibwrt

   enter string: "*IDN?"

[0100] (cmpl)

count: 5

Or, equivalently:

ud0:  ibwrt "*IDN?"

[0100] (cmpl)

count: 5

To read data from your device, use ibrd . The data that is read from the 
instrument is displayed. For example, to read 29 bytes, enter the follow

ud0:  ibrd

   enter byte count: 29

[0100] (cmpl)

count: 29

46 4C 55 4B 45 2C 20 34 FLUKE, 4

35 2C 20 34 37 39 30 31 5, 47901

37 33 2C 20 31 2E 36 20 73, 1.6 

44 31 2E 30 0A D.10.

Or, equivalently:

ud0:  ibrd 29

[0100] (cmpl)

count: 29

46 4C 55 4B 45 2C 20 34 FLUKE, 4

35 2C 20 34 37 39 30 31 5, 47901

37 33 2C 20 31 2E 36 20 73, 1.6 

44 31 2E 30 0A D.10.
NI-488.2 User Manual for Windows 6-4 © National Instruments Corporation



Chapter 6 Interactive Control Utility

 put 

iven 
When you are finished communicating with the device, make sure you
it offline using the ibonl  command, as follows:

ud0:  ibonl 0

[0100] (cmpl)

:

The ibonl  command properly closes the device handle and the ud0  
prompt is no longer available.

Interactive Control Syntax
The following special rules apply to making calls from the Interactive 
Control utility:

• The ud or BoardId  parameter is implied by the Interactive Control 
prompt, therefore it is never included in the call.

• The count  parameter to functions is unnecessary because buffer 
lengths are automatically determined by Interactive Control. 

• Function return values are handled automatically by Interactive 
Control. In addition to printing out the return ibsta  value for the 
function, it also prints other return values.

• If you do not know what parameters are appropriate to pass to a g
function call, type in the function name and press <Enter>. The 
Interactive Control utility then prompts you for each required 
parameter.

Number Syntax
You can enter numbers in either hexadecimal or decimal format. 

Hexadecimal numbers—You must prefix hexadecimal numbers with0x . 
For example, ibpad 0x16  sets the primary address to 16 hexadecimal 
(22 decimal).

Decimal numbers—Enter the number only. For example, ibpad 22  sets 
the primary address to 22 decimal.
© National Instruments Corporation 6-5 NI-488.2 User Manual for Windows



Chapter 6 Interactive Control Utility

ecial 

return 

. An 
mary 
tored 
dary 
 

alls 
e 

 the 
String Syntax
You can enter strings as an ASCII character sequence, hex bytes, or sp
symbols. 

ASCII character sequence—You must enclose the entire sequence in 
quotation marks. 

Hex byte—You must use a backslash character and an x , followed by the 
hex value. For example, hex 40 is represented by \x40 . 

Special symbols—Some instruments require special termination or 
end-of-string (EOS) characters that indicate to the device that a 
transmission has ended. The two most common EOS characters are \r  and 
\n . \r  represents a carriage return character and \n  represents a linefeed 
character. You can use these special characters to insert the carriage 
and linefeed characters into a string, as in "*IDN?\r\n" . 

Address Syntax
Some of the NI-488.2 calls have an address or address list parameter
address is a 16-bit representation of the GPIB device address. The pri
address is stored in the low byte and the secondary address, if any, is s
in the high byte. For example, a device at primary address 6 and secon
address 0x67 has an address of 0x6706. A NULL address is represented as
0xffff. An address list is represented by a comma-separated list of 
addresses, such as 1,2,3 .

Interactive Control Commands
Tables 6-1 and 6-2 summarize the syntax of the traditional NI-488.2 c
in the Interactive Control utility. Table 6-3 summarizes the syntax of th
multi-device NI-488.2 calls in the Interactive Control utility. Table 6-4 
summarizes the auxiliary functions that you can use in the Interactive 
Control utility. For more information about the function parameters, use
online help, available by typing in help . If you enter only the function 
name, the Interactive Control utility prompts you for parameters.
NI-488.2 User Manual for Windows 6-6 © National Instruments Corporation



Chapter 6 Interactive Control Utility
Table 6-1.  Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control

Syntax Description

ibask option Return configuration information where option  is a mnemonic for a 
configuration parameter

ibbna bname Change access interface of device where bname is symbolic name of 
new interface

ibclr Clear specified device

ibconfig option 

value

Alter configurable parameters where option  is mnemonic for a 
configuration parameter

ibdev BdIndx pad 

sad tmo eot eos

Open an unused device; ibdev  parameters are BdIndx pad sad tmo 

eot eos

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibln pad sad Check for presence of device on the GPIB at pad , sad

ibloc Go to local 

ibonl v Place device online or offline

ibpad v Change primary address

ibpct Pass control

ibppc v Parallel poll configure

ibrd count Read data where count  is the bytes to read

ibrda count Read data asynchronously where count  is the bytes to read

ibrdf flname Read data to file where flname  is pathname of file to read 

ibrpp Conduct a parallel poll

ibrsp Return serial poll byte

ibsad v Change secondary address

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device
© National Instruments Corporation 6-7 NI-488.2 User Manual for Windows



Chapter 6 Interactive Control Utility
ibwait mask Wait for selected event where mask is a hex or decimal integer or a list 
of mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname  is pathname of file to write 

Table 6-2.  Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control

Syntax Description

ibask option Return configuration information where option  is a mnemonic for 
a configuration parameter

ibcac v Become active Controller

ibcmd cmdbuf Send commands 

ibcmda cmdbuf Send commands asynchronously 

ibconfig option 

value

Alter configurable parameters where option  is mnemonic for a 
configuration parameter

ibdma v Enable/disable DMA

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibfind udname Return unit descriptor where udname is the symbolic name of 
interface (for example, gpib0 )

ibgts v Go from Active Controller to standby

ibist v Set/clear ist

iblines Read the state of all GPIB control lines

ibln pad sad Check for presence of device on the GPIB at pad , sad

ibloc Go to local 

ibonl v Place device online or offline

ibpad v Change primary address

Table 6-1.  Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control (Continued)

Syntax Description
NI-488.2 User Manual for Windows 6-8 © National Instruments Corporation



Chapter 6 Interactive Control Utility
ibppc v Parallel poll configure

ibrd count Read data where count  is the bytes to read

ibrda count Read data asynchronously where count  is the bytes to read

ibrdf flname Read data to file where flname  is pathname of file to read 

ibrpp Conduct a parallel poll

ibrsc v Request/release system control

ibrsv v Request service

ibsad v Change secondary address

ibsic Send interface clear

ibsre v Set/clear remote enable line

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibwait mask Wait for selected event where mask is a hex or decimal integer or a list 
of mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname  is pathname of file to write 

Table 6-3.  Syntax for Multi-Device NI-488.2 Calls in Interactive Control

Routine Syntax Description

AllSpoll addrlist Serial poll multiple devices

DevClear address Clear a device

DevClearList addrlist Clear multiple devices

EnableLocal addrlist Enable local control

EnableRemote addrlist Enable remote control

FindLstn padlist limit Find all Listeners

Table 6-2.  Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control (Continued)

Syntax Description
© National Instruments Corporation 6-9 NI-488.2 User Manual for Windows



Chapter 6 Interactive Control Utility
FindRQS addrlist Find device asserting SRQ

PassControl address Pass control to a device

PPoll Parallel poll devices

PPollConfig address dataline 

lineSense

Configure device for parallel poll 

PPollUnconfig addrlist Unconfigure device for parallel poll

RcvRespMsg count termination Receive response message

ReadStatusByte address Serial poll a device

Receive address count termination Receive data from a device

ReceiveSetup address Receive setup

ResetSys addrlist Reset multiple devices

Send address buffer eotmode Send data to a device

SendCmds buffer Send command bytes

SendDataBytes buffer eotmode Send data bytes

SendIFC Send interface clear

SendList addrlist buffer eotmode Send data to multiple devices

SendLLO Put devices in local lockout

SendSetup addrlist Send setup

SetRWLS addrlist Put devices in remote with lockout state

TestSRQ Test for service request

TestSys addrlist Cause multiple devices to perform self-tests

Trigger address Trigger a device

TriggerList addrlist Trigger multiple devices

WaitSRQ Wait for service request

Table 6-3.  Syntax for Multi-Device NI-488.2 Calls in Interactive Control (Continued)

Routine Syntax Description
NI-488.2 User Manual for Windows 6-10 © National Instruments Corporation



Chapter 6 Interactive Control Utility

 
ple, 
 

Status Word
In the Interactive Control utility, all NI-488.2 calls (except ibfind  and 
ibdev ) return the status word ibsta  in two forms: a hex value in square
brackets and a list of mnemonics in parentheses. In the following exam
the status word is on the second line, showing that the write operation
completed successfully: 

ud0: ibwrt "*IDN?"

[0100] (cmpl)

count: 5

ud0:

For more information about ibsta , refer to Chapter 3, Developing Your 
NI-488.2 Application.

Table 6-4.  Auxiliary Functions in Interactive Control

Function Description

set udname Select active device or interface where udname is the symbolic name of the 
new device or interface (for example, dev1  or gpib0 ). Call ibfind  or ibdev  
initially to open each device or interface.

set 488.2 v Start using multi-device NI-488.2 calls for interface v.

help Display the Interactive Control utility online help.

help option Display help information about option , where option  is any NI-488.2 or 
auxiliary call (for example, help ibwrt  or help set ).

! Repeat previous function.

- Turn OFF display.

+ Turn ON display.

n * function Execute function n times where function  represents the correct Interactive 
Control function syntax.

n * ! Execute previous function n times.

$ filename Execute indirect file where filename  is the pathname of a file that contains 
Interactive Control functions to be executed.

buffer option Set type of display used for buffers. Valid options are full , brief , ascii , 
and off . Default is full .

q Exit or quit.
© National Instruments Corporation 6-11 NI-488.2 User Manual for Windows



Chapter 6 Interactive Control Utility

ty 
or 

d to 
 the 

er 4, 

he 
f an 

RG 
ss 

s 
tion 
t & 
Error Information
If an NI-488.2 call completes with an error, the Interactive Control utili
displays the relevant error mnemonic. In the following example, an err
condition EBUS has occurred during a data transfer:

ud0: ibwrt "*IDN?"

[8100] (err cmpl)

error: EBUS

count: 1

ud0:

In this example, the addressing command bytes could not be transmitte
the device. This indicates that either the GPIB device is powered off or
GPIB cable is disconnected. 

For a detailed list of the error codes and their meanings, refer to Chapt
Debugging Your Application.

Count Information
When an I/O function completes, the Interactive Control utility displays t
actual number of bytes sent or received, regardless of the existence o
error condition. 

If one of the addresses in an address list is invalid, then the error is EA
and the Interactive Control utility displays the index of the invalid addre
as the count.

The count has a different meaning depending on which NI-488.2 call i
made. For the correct interpretation of the count return, refer to the func
descriptions in the NI-488.2 online help, available through Measuremen
Automation Explorer. To start Measurement & Automation Explorer, 
select Start»Programs»National Instruments NI-488.2»Explore GPIB. 
Then, select an interface under Devices and Interfaces in the left window 
frame, right-click, and select NI-488.2 Help to view the online help.
NI-488.2 User Manual for Windows 6-12 © National Instruments Corporation



© National Instruments Corporation 7-1 NI-488.2 User Ma
7

ur 

8.2 
o 

 

ed 

on 
hen 
ine 

 

as 
of 

 the 
 

itten 
e 
NI-488.2 Programming 
Techniques

This chapter describes techniques for using some NI-488.2 calls in yo
application. 

For more information about each function or routine, refer to the NI-48
online help, available through Measurement & Automation Explorer. T
start Measurement & Automation Explorer, select Start»Programs» 
National Instruments NI-488.2»Explore GPIB. Then, select an interface
under Devices and Interfaces in the left window frame, right-click, and 
select NI-488.2 Help to view the online help.

Termination of Data Transfers
GPIB data transfers are terminated either when the GPIB EOI line is 
asserted with the last byte of a transfer or when a preconfigured 
end-of-string (EOS) character is transmitted. By default, EOI is assert
with the last byte of writes and the EOS modes are disabled.

You can use the ibeot  function to enable or disable the end of transmissi
(EOT) mode. If EOT mode is enabled, the GPIB EOI line is asserted w
the last byte of a write is sent out on the GPIB. If it is disabled, the EOI l
is not asserted with the last byte of a write.

You can use the ibeos  function to enable, disable, or configure the EOS
modes. EOS mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte.

• EOS comparison method—This indicates whether the EOS byte h
seven or eight significant bits. For a 7-bit EOS byte, the eighth bit 
the EOS byte is ignored.

• EOS write method—If this is enabled, the GPIB EOI line is 
automatically asserted when the EOS byte is written to the GPIB. If
buffer passed into an ibwrt  call contains five occurrences of the EOS
byte, the EOI line is asserted as each of the five EOS bytes are wr
to the GPIB. If an ibwrt  buffer does not contain an occurrence of th
nual for Windows



Chapter 7 NI-488.2 Programming Techniques

 the 

 the 
. If 

 

 
 in. 

 
t, 
I 

l for 
 

488 
 

u 
, 
gth 

, 

 

EOS byte, the EOI line is not asserted (unless the EOT mode is 
enabled, in which case the EOI line is asserted with the last byte of
write).

• EOS read method—If this is enabled, ibrd , ibrda , and ibrdf  calls 
are terminated when the EOS byte is detected on the GPIB, when
GPIB EOI line is asserted, or when the specified count is reached
the EOS read method is disabled, ibrd , ibrda , and ibrdf  calls 
terminate only when the GPIB EOI line is asserted or the specified
count has been read.

You can use the ibconfig  function to configure the software to indicate
whether the GPIB EOI line was asserted when the EOS byte was read
Use the IbcEndBitIsNormal  option to configure the software to report
only the END bit in ibsta  when the GPIB EOI line is asserted. By defaul
END is reported in ibsta  when either the EOS byte is read in or the EO
line is asserted during a read.

High-Speed Data Transfers (HS488)
National Instruments has designed a high-speed data transfer protoco
IEEE 488 called HS488. This protocol increases performance for GPIB
reads and writes up to 8 Mbytes/s, depending on your system. 

HS488 is a superset of the IEEE 488 standard; thus, you can mix 
IEEE 488.1, IEEE 488.2, and HS488 devices in the same system. If HS
is enabled, the TNT4882C hardware implements high-speed transfers
automatically when communicating with HS488 instruments. If you 
attempt to enable HS488 on a GPIB interface that does not have the 
TNT4882C hardware, the ECAP error code is returned.

Enabling HS488
To enable HS488 for your GPIB interface, use the ibconfig  function 
(option IbcHSCableLength ). The value passed to ibconfig  should 
specify the number of meters of cable in your GPIB configuration. If yo
specify a cable length that is much smaller than what you actually use
the transferred data could become corrupted. If you specify a cable len
longer than what you actually use, the data is transferred successfully
but more slowly than if you specified the correct cable length.

In addition to using ibconfig  to configure your GPIB interface for 
HS488, the Controller-In-Charge must send out GPIB command bytes
(interface messages) to configure other devices for HS488 transfers. 
NI-488.2 User Manual for Windows 7-2 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

 
e 

 next 

ust 

s. 
all 
uld 
 that 
 
ble 

6F) 

 in 

er to 

uter 

he 
488 
ase 

s 
488 
If you are using device-level calls, the NI-488.2 software automatically
sends the HS488 configuration message to devices. If you enabled th
HS488 protocol in the NI-488.2 Configuration utility, the NI-488.2 
software sends out the HS488 configuration message when you use ibdev  
to bring a device online. If you call ibconfig  to change the GPIB cable 
length, the NI-488.2 software sends out the HS488 message again, the
time you call a device-level function.

If you are using board-level traditional NI-488.2 calls or multi-device 
NI-488.2 calls and you want to configure devices for high-speed, you m
send the HS488 configuration messages using ibcmd  or SendCmds. The 
HS488 configuration message is made up of two GPIB command byte
The first byte, the Configure Enable (CFE) message (hex 1F), places 
HS488 devices into their configuration mode. Non-HS488 devices sho
ignore this message. The second byte is a GPIB secondary command
indicates the number of meters of cable in your system. It is called the
Configure (CFGn) message. Because HS488 can operate only with ca
lengths of 1 to 15 m, only CFGn values of 1 through 15 (hex 61 through 
are valid. If the cable length was configured properly in the NI-488.2 
Configuration utility, you can determine how many meters of cable are
your system by calling ibask  (option IbaHSCableLength ) in your 
application. For more information about CFE and CFGn messages, ref
the topic Multiline Interface Messages in the NI-488.2 online help, 
available through Measurement & Automation Explorer. To start 
Measurement & Automation Explorer, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Then, select an interface under 
Devices and Interfaces in the left window frame, right-click, and select 
NI-488.2 Help to view the online help.

System Configuration Effects on HS488
Maximum HS488 data transfer rates can be limited by your host comp
and GPIB system setup. For example, when using a PC-compatible 
computer with PCI bus, the maximum obtainable transfer rate is 
8 Mbytes/s, but when using a PC-compatible computer with ISA bus, t
maximum transfer rate obtainable is only 2 Mbytes/s. The same IEEE 
cabling constraints for a 350 ns T1 delay apply to HS488. As you incre
the amount of cable in your GPIB configuration, the maximum data 
transfer rate using HS488 decreases. For example, two HS488 device
connected by two meters of cable can transfer data faster than four HS
devices connected by 4 m of cable.
© National Instruments Corporation 7-3 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

. If 

 

nce 

e 

our 
s 

en 

 

Waiting for GPIB Conditions
You can use the ibwait  function to obtain the current ibsta  value or to 
suspend your application until a specified condition occurs on the GPIB
you use ibwait  with a parameter of zero, it immediately updates ibsta  
and returns. If you want to use ibwait  to wait for one or more events to 
occur, pass a wait mask to the function. The wait mask should always
include the TIMO event; otherwise, your application is suspended 
indefinitely until one of the wait mask events occurs.

Asynchronous Event Notification in Win32 
NI-488.2 Applications

Win32 NI-488.2 applications can asynchronously receive event 
notifications using the ibnotify  function. This function is useful if you 
want your application to be notified asynchronously about the occurre
of one or more GPIB events. For example, you might choose to use 
ibnotify  if your application only needs to interact with your GPIB devic
when it is requesting service. After calling ibnotify , your application 
does not need to check the status of your GPIB device. Then, when y
GPIB device requests service, the NI-488.2 driver automatically notifie
your application that the event has occurred by invoking a callback 
function. The callback function is registered with the NI-488.2 driver wh
the ibnotify  call is made. 

Calling the ibnotify Function
ibnotify  has the following function prototype:

ibnotify (

int ud,// unit descriptor

int mask,// bit mask of GPIB events

GpibNotifyCallback_t Callback,

// callback function    

void * RefData// user-defined reference data

)

Both board-level and device-level ibnotify  calls are supported by the 
NI-488.2 driver. If you are using device-level calls, you call ibnotify  
with a device handle for ud and a mask of RQS, CMPL, END, or TIMO. If 
you are using board-level calls, you call ibnotify  with a board handle for 
ud and a mask of any values except RQS or ERR. The ibnotify  mask bits 
are identical to the ibwait  mask bits. In the example of waiting for your
NI-488.2 User Manual for Windows 7-4 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

:

 the 
s 

ally 

rest 
ile 

s. For 
tion 

ating 
GPIB device to request service, you might choose to pass ibnotify  a 
mask with RQS (for device-level) or SRQI (for board-level). 

The callback function that you register with the ibnotify  call is invoked 
by the NI-488.2 driver when one or more of the mask bits passed to 
ibnotify  is TRUE. The function prototype of the callback is as follows

int __stdcall Callback (

int ud,// unit descriptor

int ibsta,// ibsta value

int iberr,// iberr value

long ibcntl,// ibcntl value

void * RefData// user-defined reference data 

)

The callback function is passed a unit descriptor, the current values of
NI-488.2 global variables, and the user-defined reference data that wa
passed to the original ibnotify  call. The NI-488.2 driver interprets the 
return value for the callback as a mask value that is used to automatic
rearm the callback if it is non-zero. For a complete description of 
ibnotify , refer to the NI-488.2 online help, available through 
Measurement & Automation Explorer. To start Measurement & 
Automation Explorer, select Start»Programs»National Instruments 
NI-488.2»Explore GPIB. Then, select an interface under Devices and 
Interfaces in the left window frame, right-click, and select NI-488.2 Help 
to view the online help.

Note The ibnotify  callback is executed in a separate thread of execution from the 
of your application. If your application will be performing other NI-488.2 operations wh
it is using ibnotify , use the per-thread NI-488.2 globals that are provided by the 
ThreadIbsta , ThreadIberr , ThreadIbcnt , and ThreadIbcntl  functions described 
in the Writing Multithreaded Win32 NI-488.2 Applications section of this chapter. In 
addition, if your application needs to share global variables with the callback, use a 
synchronization primitive (for example, a semaphore) to protect access to any global
more information about the use of synchronization primitives, refer to the documenta
about using Win32 synchronization objects that came with your development tools.

ibnotify Programming Example
The following code is an example of how you can use ibnotify  in your 
application. Assume that your GPIB device is a multimeter that you 
program it to acquire a reading by sending "SEND DATA". The multimeter 
requests service when it has a reading ready, and each reading is a flo
point value.
© National Instruments Corporation 7-5 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

ion. 
ry 

ad is 
ses 
In this example, globals are shared by the Callback  thread and the main 
thread, and the access of the globals is not protected by synchronizat
In this case, synchronization of access to these globals is not necessa
because of the way they are used in the application: only a single thre
writing the global values and that thread only adds information (increa
the count or adds another reading to the array of floats).

int __stdcall MyCallback (int ud, int LocalIbsta, int LocalIberr, 

long LocalIbcntl, void *RefData);

int ReadingsTaken = 0;

float Readings[1000];

BOOL DeviceError = FALSE;

char expectedResponse = 0x43;

int main() 

{

int ud;

// Assign a unique identifier to the device and store it in the 

// variable ud. ibdev opens an available device and assigns it to 

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode 

// disabled. If ud is less than zero, then print an error message 

// that the call failed and exit the program.

ud = ibdev (0,// connect board

 1, // primary address of GPIB device

 0, // secondary address of GPIB device

 T10s, // 10 second I/O timeout

 1, // EOT mode turned on

 0); // EOS mode disabled

if (ud < 0)  {

printf ("ibdev failed.\n");

return 0;

}

// Issue a request to the device to send the data. If the ERR bit 

// is set in ibsta, then print an error message that the call failed 

// and exit the program.

ibwrt (ud, "SEND DATA", 9L);

if (ibsta & ERR)  {

printf ("unable to write to device.\n");
NI-488.2 User Manual for Windows 7-6 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques
return 0;

}

// set up the asynchronous event notification on RQS

ibnotify (ud, RQS, MyCallback, NULL);

if (ibsta & ERR)  {

printf ("ibnotify call failed.\n");

return 0;

}

while ((ReadingsTaken < 1000) && !(DeviceError))  {

// Your application does useful work here. For example, it

// might process the device readings or do any other useful work.

}

// disable notification

ibnotify (ud, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and software.

ibonl (ud, 0);

return 1;

}

int __stdcall MyCallback (int LocalUd, int LocalIbsta, int LocalIberr, 

long LocalIbcntl, void *RefData)

{

char SpollByte;

char ReadBuffer[40];

// If the ERR bit is set in LocalIbsta, then print an error

// message and return.

if (LocalIbsta & ERR)  {

printf ("GPIB error %d has occurred. No more callbacks.\n", 

LocalIberr);

DeviceError = TRUE;

return 0;

}

// Read the serial poll byte from the device. If the ERR bit is set 

// in ibsta, then print an error message and return.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR)  {

printf ("ibrsp failed. No more callbacks.\n");

DeviceError = TRUE;
© National Instruments Corporation 7-7 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques
return 0;

}

// If the returned status byte equals the expected response, then 

// the device has valid data to send; otherwise it has a fault 

// condition to report.

if (SpollByte != expectedResponse)   {

printf("Device returned invalid response. Status byte = 0x%x\n", 

   SpollByte);

DeviceError = TRUE;

return 0;

}

// Read the data from the device. If the ERR bit is set in ibsta, 

// then print an error message and return.

LocalIbsta = ibrd (LocalUd, ReadBuffer, 40L);

if (LocalIbsta & ERR)  {

printf ("ibrd failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// The string returned by ibrd is a binary string whose length is

// specified by the byte count in ibcntl. However, many GPIB

// instruments return ASCII data strings and this example makes this

// assumption. Because of this, it is possible to add a NULL

// character to the end of the data received and use the printf()

// function to display the ASCII data. The following code

// illustrates that.

ReadBuffer[ibcntl] = ‘\0’;

// Convert the data into a numeric value.

sscanf (ReadBuffer, "%f", &Readings[ReadingsTaken]);

// Display the data.

printf(“Reading : %f\n”, Readings[ReadingsTaken]);

ReadingsTaken += 1;

if (ReadingsTaken >= 1000)  {

return 0;

}

else  {
NI-488.2 User Manual for Windows 7-8 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

 

88.2 

 
 
rm 

er to 

calls, 
 the 

 
he 
e 

. 
f 

.

// Issue a request to the device to send the data and rearm 

// callback on RQS.

LocalIbsta = ibwrt (LocalUd, "SEND DATA", 9L);

if (LocalIbsta & ERR)  {

printf ("ibwrt failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

else  {

return RQS;

}

}

}

Writing Multithreaded Win32 NI-488.2 Applications
If you are writing a multithreaded NI-488.2 application and you plan to
make all of your NI-488.2 calls from a single thread, you can safely 
continue to use the traditional NI-488.2 global variables (ibsta , iberr , 
ibcnt , ibcntl ). The NI-488.2 global variables are defined on a 
per-process basis, so each process accesses its own copy of the NI-4
globals.

If you are writing a multithreaded NI-488.2 application and you plan to
make NI-488.2 calls from more than a single thread, you cannot safely
continue to use the traditional NI-488.2 global variables without some fo
of synchronization (for example, a semaphore). To understand why, ref
the following example.

Assume that a process has two separate threads that make NI-488.2 
thread #1 and thread #2. Just as thread #1 is about to examine one of
NI-488.2 globals, it gets preempted and thread #2 is allowed to run. 
Thread #2 proceeds to make several NI-488.2 calls that automatically
update the NI-488.2 globals. Later, when thread #1 is allowed to run, t
NI-488.2 global that it is ready to examine is no longer in a known stat
and its value is no longer reliable.

The previous example illustrates a well-known multithreading problem
It is unsafe to access process-global variables from multiple threads o
execution. You can avoid this problem in two ways:

• Use synchronization to protect access to process-global variables

• Do not use process-global variables.
© National Instruments Corporation 7-9 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

ure 
ls 
or 
88.2 

bals 
ion 
ion 

hread 
alls. 
opy 
vate 
 can 

als, 
or 

als 

efore, 
 

If you choose to implement the synchronization solution, you must ens
that the code making NI-488.2 calls and examining the NI-488.2 globa
modified by a NI-488.2 call is protected by a synchronization primitive. F
example, each thread might acquire a semaphore before making a NI-4
call and then release the semaphore after examining the NI-488.2 glo
modified by the call. For more information about the use of synchronizat
primitives, refer to the documentation about using Win32 synchronizat
objects that came with your development tools.

If you choose not to use process-global variables, you can access per-t
copies of the NI-488.2 global variables using a special set of NI-488.2 c
Whenever a thread makes a NI-488.2 call, the driver keeps a private c
of the NI-488.2 globals for that thread. The driver keeps a separate pri
copy for each thread. The following code shows the set of functions you
use to access these per-thread NI-488.2 global variables:

int ThreadIbsta(); // return thread-specific ibsta

int ThreadIberr(); // return thread-specific iberr

int ThreadIbcnt(); // return thread-specific ibcnt

long ThreadIbcntl(); // return thread-specific ibcntl

In your application, instead of accessing the per-process NI-488.2 glob
substitute a call to get the corresponding per-thread NI-488.2 global. F
example, the following line of code,

if (ibsta & ERR)

could be replaced by,

if (ThreadIbsta() & ERR)

A quick way to convert your application to use per-thread NI-488.2 glob
is to add the following #define  lines at the top of your C file:

#define ibsta ThreadIbsta()

#define iberr ThreadIberr()

#define ibcnt ThreadIbcnt()

#define ibcntl ThreadIbcntl()

Note If you are using ibnotify  in your application (see the Asynchronous Event 
Notification in Win32 NI-488.2 Applications section of this chapter), the ibnotify  
callback is executed in a separate thread that is created by the NI-488.2 driver. Ther
if your application makes NI-488.2 calls from the ibnotify  callback function and makes
NI-488.2 calls from other places, you must use the ThreadIbsta , ThreadIberr , 
ThreadIbcnt , and ThreadIbcntl  functions described in this section, instead of the 
per-process NI-488.2 globals. 
NI-488.2 User Manual for Windows 7-10 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

of 
ver 

 the 
ment 

:

lt), 
rst 

 a 

e 
IC 
 a 
en, 

use 
ns 
 the 

in 
ple, 
Device-Level Calls and Bus Management
The device-level traditional NI-488.2 calls are designed to perform all 
the GPIB management for your application. However, the NI-488.2 dri
can handle bus management only when the GPIB interface is CIC 
(Controller-In-Charge). Only the CIC is able to send command bytes to
devices on the bus to perform device addressing or other bus manage
activities. 

Use one of the following methods to make your GPIB interface the CIC

• If your GPIB interface is configured as the System Controller (defau
it automatically makes itself the CIC by asserting the IFC line the fi
time you make a device-level call.

• If your setup includes more than one Controller, or if your GPIB 
interface is not configured as the System Controller, use the CIC 
Protocol method. To use the protocol, issue the ibconfig  function 
(option IbcCICPROT ) or use the NI-488.2 Configuration utility to 
activate the CIC protocol. If the interface is not CIC, and you make
device-level call with the CIC protocol enabled, the following 
sequence occurs: 

1. The GPIB interface asserts the SRQ line.

2. The current CIC serial polls the interface.

3. The interface returns a response byte of hex 42.

4. The current CIC passes control to the GPIB interface.

If the current CIC does not pass control, the NI-488.2 driver returns th
ECIC error code to your application. This error can occur if the current C
does not understand the CIC protocol. If this happens, you could send
device-specific command requesting control for the GPIB interface. Th
use a board-level ibwait  command to wait for CIC.

Talker/Listener Applications
Although designed for Controller-In-Charge applications, you can also 
the NI-488.2 software in most non-Controller situations. These situatio
are known as Talker/Listener applications because the interface is not
GPIB Controller. 

A Talker/Listener application typically uses ibwait  with a mask of 0 to 
monitor the status of the interface. Then, based on the status bits set 
ibsta , the application takes whatever action is appropriate. For exam
© National Instruments Corporation 7-11 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

) 
r 
e 

L or 
ects 

e 
f the 

ed, it 
ust 

g is 
 

ng 
rial 
d 

set 
n a 
wer 

e. In 
also 
 bit 
a. 

est, 

when 
s.
the application could monitor the status bits TACS (Talker Active State
and LACS (Listener Active State) to determine when to send data to o
receive data from the Controller. The application could also monitor th
DCAS (Device Clear Active State) and DTAS (Device Trigger Active 
State) bits to determine if the Controller has sent the device clear (DC
SDC) or trigger (GET) messages to the interface. If the application det
a device clear from the Controller, it might reset the internal state of 
message buffers. If it detects a trigger message from the Controller, th
application might begin an operation, such as taking a voltage reading i
application is actually acting as a voltmeter.

Serial Polling
You can use serial polling to obtain specific information from GPIB 
devices when they request service. When the GPIB SRQ line is assert
signals the Controller that a service request is pending. The Controller m
then determine which device asserted the SRQ line and respond 
accordingly. The most common method for SRQ detection and servicin
the serial poll. This section describes how to set up your application to
detect and respond to service requests from GPIB devices. 

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by asserti
the GPIB SRQ line. When the Controller acknowledges the SRQ, it se
polls each open device on the bus to determine which device requeste
service. Any device requesting service returns a status byte with bit 6 
and then unasserts the SRQ line. Devices not requesting service retur
status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lo
order bits to communicate the reason for the service request or to 
summarize the state of the device. 

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status byt
addition to setting bit 6 when requesting service, IEEE 488.2 devices 
use two other bits to specify their status. Bit 4, the Message Available
(MAV), is set when the device is ready to send previously queried dat
Bit 5, the Event Status bit (ESB), is set if one or more of the enabled 
IEEE 488.2 events occurs. These events include power-on, user requ
command error, execution error, device dependent error, query error, 
request control, and operation complete. The device can assert SRQ 
ESB or MAV are set, or when a manufacturer-defined condition occur
NI-488.2 User Manual for Windows 7-12 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

 
 

 the 

in a 
vice 

n is 

FO) 

d. 
use 

 this 

iver 
l 
ed.

 

til an 
s 

an 
o 

can 
Automatic Serial Polling
You can enable automatic serial polling if you want your application to
conduct a serial poll automatically when the SRQ line is asserted. The
autopolling procedure occurs as follows:

1. To enable autopolling, use the configuration function, ibconfig , with 
option IbcAUTOPOLL, or the NI-488.2 Configuration utility. 
(Autopolling is enabled by default.)

2. When the SRQ line is asserted, the driver automatically serial polls
open devices. 

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored 
queue associated with the device that sent it. The RQS bit of the de
status word, ibsta , is set. 

4. The polling continues until SRQ is unasserted or an error conditio
detected. 

5. To empty the queue, use the ibrsp  function. ibrsp  returns the first 
queued response. Other responses are read in first-in-first-out (FI
fashion. If the RQS bit of the status word is not set when ibrsp  is 
called, a serial poll is conducted and returns the response receive
Empty the queue as soon as an automatic serial poll occurs, beca
responses might be discarded if the queue is full.

6. If the RQS bit of the status word is still set after ibrsp  is called, the 
response byte queue contains at least one more response byte. If
happens, continue to call ibrsp  until RQS is cleared.

Stuck SRQ State
If autopolling is enabled and the GPIB interface detects an SRQ, the dr
serial polls all open devices connected to that interface. The serial pol
continues until either SRQ unasserts or all the devices have been poll

If no device responds positively to the serial poll, or if SRQ remains in
effect because of a faulty instrument or cable, a stuck SRQ state is in effect. 
If this happens during an ibwait  for RQS, the driver reports the ESRQ 
error. If the stuck SRQ state happens, no further polls are attempted un
ibwait  for RQS is made. When ibwait  is issued, the stuck SRQ state i
terminated and the driver attempts a new set of serial polls. 

Autopolling and Interrupts
If autopolling and interrupts are both enabled, the NI-488.2 software c
perform autopolling after any device-level NI-488.2 call provided that n
GPIB I/O is currently in progress. In this case, an automatic serial poll 
© National Instruments Corporation 7-13 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

8.2 

re 

ll 
 the 

ing 
occur even when your application is not making any calls to the NI-48
software. Autopolling can also occur when a device-level ibwait  for RQS 
is in progress. Autopolling is not allowed when an application calls a 
board-level traditional or multi-device NI-488.2 call, or the stuck SRQ 
(ESRQ) condition occurs. 

Note The NI-488.2 software for Windows NT does not function properly if interrupts a
disabled.

SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls
You can use the device-level traditional NI-488.2 call ibrsp  to conduct a 
serial poll. ibrsp  conducts a single serial poll and returns the serial po
response byte to the application. If automatic serial polling is enabled,
application can use ibwait  to suspend program execution until RQS 
appears in the status word, ibsta . The program can then call ibrsp  to 
obtain the serial poll response byte.

The following example shows you how to use the ibwait  and ibrsp  
functions in a typical SRQ servicing situation when automatic serial poll
is enabled:

#include "decl-32.h"

char GetSerialPollResponse ( int DeviceHandle )

{

char SerialPollResponse = 0;

ibwait ( DeviceHandle, TIMO | RQS );

if ( ibsta & RQS )  {

printf ( "Device asserted SRQ.\n" );

/* Use ibrsp to retrieve the serial poll response. */

ibrsp ( DeviceHandle, &SerialPollResponse );

}

return SerialPollResponse;

}

NI-488.2 User Manual for Windows 7-14 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

t 
nent 

 

s 
y. 
e 

t. 

 to 

ine 
 
 is 
SRQ and Serial Polling with Multi-Device NI-488.2 Calls
The NI-488.2 software includes a set of multi-device NI-488.2 calls tha
you can use to conduct SRQ servicing and serial polling. Routines perti
to SRQ servicing and serial polling are AllSpoll , ReadStatusByte , 
FindRQS, TestSRQ, and WaitSRQ. Following are descriptions of each of
the routines:

• AllSpoll  can serial poll multiple devices with a single call. It place
the status bytes from each polled instrument into a predefined arra
Then, you must check the RQS bit of each status byte to determin
whether that device requested service.

• ReadStatusByte  is similar to AllSpoll , except that it only serial 
polls a single device. It is also similar to the device-level NI-488.2 
ibrsp  function.

• FindRQS serial polls a list of devices until it finds a device that is 
requesting service or until it has polled all of the devices on the lis
The routine returns the index and status byte value of the device 
requesting service.

• TestSRQ determines whether the SRQ line is asserted and returns
the program immediately.

• WaitSRQ is similar to TestSRQ, except that WaitSRQ suspends the 
application until either SRQ is asserted or the timeout period is 
exceeded.

The following examples use these calls to detect SRQ and then determ
which device requested service. In these examples, three devices are
present on the GPIB at addresses 3, 4, and 5, and the GPIB interface
designated as bus index 0. The first example uses FindRQS to determine 
which device is requesting service, and the second example uses AllSpoll  
to serial poll all three devices. Both examples use WaitSRQ to wait for the 
GPIB SRQ line to be asserted. 

Example 1: Using FindRQS
This example shows you how to use FindRQS to find the first device that 
is requesting service:

void GetASerialPollResponse ( char *DevicePad, 

  char *DeviceResponse )

{

char SerialPollResponse = 0;

int WaitResult;

Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);
© National Instruments Corporation 7-15 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques
if (WaitResult) {

printf ("SRQ is asserted.\n");

FindRQS ( 0, AddrList, &SerialPollResponse );

if (!(ibsta & ERR))  {

printf ("Device at pad %x returned byte

%x.\n", AddrList[ibcnt],(int) 

SerialPollResponse);

*DevicePad = AddrList[ibcnt];

*DeviceResponse = SerialPollResponse;

}

}

return;

}

Example 2: Using AllSpoll
This example shows you how to use AllSpoll  to serial poll three devices 
with a single call:

void GetAllSerialPollResponses ( Addr4882_t AddrList[], 

short ResponseList[] )

{

int WaitResult;

WaitSRQ (0, &WaitResult);

if ( WaitResult ) {

printf ( "SRQ is asserted.\n" );

AllSpoll ( 0, AddrList, ResponseList );

if (!(ibsta & ERR))  {

for (i = 0; AddrList[i] != NOADDR; i++)  {

printf ("Device at pad %x returned byte

%x.\n", AddrList[i], ResponseList[i] );

}

}

}

return;

}

NI-488.2 User Manual for Windows 7-16 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

ck 
erial 
nse 

allel 
alls 
he 
al 

e 
 

at 

he 
le, 

 

Parallel Polling
Although parallel polling is not widely used, it is a useful method for 
obtaining the status of more than one device at the same time. The 
advantage of parallel polling is that a single parallel poll can easily che
up to eight individual devices at once. In comparison, eight separate s
polls would be required to check eight devices for their serial poll respo
bytes. The value of the individual status bit (ist ) determines the parallel 
poll response.

Implementing a Parallel Poll
You can implement parallel polling with either the traditional or 
multi-device NI-488.2 calls. If you use multi-device NI-488.2 calls to 
execute parallel polls, you do not need extensive knowledge of the par
polling messages. However, you should use the traditional NI-488.2 c
for parallel polling when the GPIB interface is not the Controller, and t
interface must configure itself for a parallel poll and set its own individu
status bit (ist ). 

Parallel Polling with Traditional NI-488.2 Calls
Complete the following steps to implement parallel polling using 
traditional NI-488.2 calls. Each step contains example code.

1. Configure the device for parallel polling using the ibppc  function, 
unless the device can configure itself for parallel polling. 

ibppc  requires an 8-bit value to designate the data line number, th
ist  sense, and whether the function configures the device for the
parallel poll. The bit pattern is as follows:

0  1  1  E  S  D2  D1  D0

E is 1 to disable parallel polling and 0 to enable parallel polling for th
particular device.

S is 1 if the device is to assert the assigned data line when ist  is 1, and 
0 if the device is to assert the assigned data line when ist  is 0.

D2 through D0 determine the number of the assigned data line. T
physical line number is the binary line number plus one. For examp
DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel polling
using traditional NI-488.2 calls. The device asserts DIO7 if its ist  
is 0.
© National Instruments Corporation 7-17 NI-488.2 User Manual for Windows



Chapter 7 NI-488.2 Programming Techniques

ry 
erts 

rs 

7 

 
 

he 

 

ll 
5. If 

rn 
 70 
In this example, the ibdev  command opens a device that has a prima
address of 3, has no secondary address, has a timeout of 3 s, ass
EOI with the last byte of a write operation, and has EOS characte
disabled.

The following call configures the device to respond to the poll on DIO
and to assert the line in the case when its ist  is 0. Pass the binary bit 
pattern, 0110 0110 or hex 66, to ibppc .

#include "decl-32.h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);

ibppc(dev, 0x66);

If the GPIB interface configures itself for a parallel poll, you should
still use the ibppc  function. Pass the interface index or an interface
unit descriptor value as the first argument in ibppc . Also, if the 
individual status bit (ist ) of the interface needs to be changed, use t
ibist  function. 

In the following example, the GPIB interface is to configure itself to
participate in a parallel poll. It asserts DIO5 when ist  is 1 if a parallel 
poll is conducted.

ibppc(0, 0x6C);

ibist(0, 1);

2. Conduct the parallel poll using ibrpp  and check the response for a 
certain value. The following example code performs the parallel po
and compares the response to hex 10, which corresponds to DIO
that bit is set, the ist  of the device is 1.

ibrpp(dev, &ppr);

if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that 
any value having the parallel poll disable bit set (bit 4) in the bit patte
disables the configuration, so you can use any value between hex
and 7E.

ibppc(dev, 0x70);
NI-488.2 User Manual for Windows 7-18 © National Instruments Corporation



Chapter 7 NI-488.2 Programming Techniques

he 
ne 5 

 
e 

s list. 
llel 
Parallel Polling with Multi-Device NI-488.2 Calls
Complete the following steps to implement parallel polling the using 
multi-device NI-488.2 calls. Each step contains example code.

1. Configure the device for parallel polling using the PPollConfig  
routine, unless the device can configure itself for parallel polling. T
following example configures a device at address 3 to assert data li
(DIO5) when its ist  value is 1.

#include "decl-32.h"

char response;

Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit

of the device and determines whether the data 

line is asserted.*/

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll , store the response, and check
the response for a certain value. In the following example, becaus
DIO5 is asserted by the device if ist  is 1, the program checks bit 4 
(hex 10) in the response to determine the value of ist .

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit

of the device at that time is equal to 1. If 

it does not appear, the ist bit is equal to 0. 

Check the bit in the following statement. */

if (response & 0x10) {

printf("The ist equals 1.\n");

}

else {

printf("The ist equals 0.\n");

}

3. Unconfigure the device for parallel polling using PPollUnconfig , as 
shown in the following example. In this example, the NOADDR constant 
must appear at the end of the array to signal the end of the addres
If NOADDR is the only value in the array, all devices receive the para
poll disable message.

AddressList[0] = 3;

AddressList[1] = NOADDR;

PPollUnconfig(0, AddressList);
© National Instruments Corporation 7-19 NI-488.2 User Manual for Windows



© National Instruments Corporation A-1 NI-488.2 User Ma
A

e 
n 
 
 
fer 
 
onal 
 by 
nd 

 out 
ally a 

as a 
ion 

 at 
IC 
rent 
IB 
GPIB Basics

The ANSI/IEEE Standard 488.1-1987, also known as General Purpos
Interface Bus (GPIB), describes a standard interface for communicatio
between instruments and controllers from various vendors. It contains
information about electrical, mechanical, and functional specifications.
GPIB is a digital, 8-bit parallel communications interface with data trans
rates of 1 Mbyte/s and higher, using a three-wire handshake. The bus
supports one System Controller, usually a computer, and up to 14 additi
instruments. The ANSI/IEEE Standard 488.2-1992 extends IEEE 488.1
defining a bus communication protocol, a common set of data codes a
formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends
data messages. Listeners receive data messages. The Controller, usu
computer, manages the flow of information on the bus. It defines the 
communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital 
voltmeter, for example, can be a Talker and a Listener. If your system h
National Instruments GPIB interface and software installed, it can funct
as a Talker, Listener, and Controller.

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Controller
a time can be the active Controller, or Controller-In-Charge (CIC). The C
can be either active or inactive (standby). Control can pass from the cur
CIC to an idle Controller, but only the System Controller, usually a GP
interface, can make itself the CIC.
nual for Windows



Appendix A GPIB Basics

ress. 
ional 

uses 
hen 

 
n 

, the 
 
 

ows 

ndary 
he 

lines 
 16 
 are 
GPIB Addressing
All GPIB devices and interfaces must be assigned a unique GPIB add
A GPIB address is made up of two parts: a primary address and an opt
secondary address. 

The primary address is a number in the range 0 to 30. The Controller 
this address to form a talk or listen address that is sent over the GPIB w
communicating with a device. 

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the
GPIB address. A listen address is formed by setting bit 5, the LA (Liste
Active) bit of the GPIB address. For example, if a device is at address 1
Controller sends hex 41 (address 1 with bit 6 set) to make the device a
Talker. Because the Controller is usually at primary address 0, it sends
hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure A-1 sh
the configuration of the GPIB address bits. 

 

Figure A-1.  GPIB Address Bits

With some devices, you can use secondary addressing. A secondary 
address is a number in the range hex 60 to hex 7E. When you use seco
addressing, the Controller sends the primary talk or listen address of t
device followed by the secondary address of the device. 

Sending Messages across the GPIB
Devices on the bus communicate by sending messages. Signals and 
transfer these messages across the GPIB interface, which consists of
signal lines and 8 ground return (shield drain) lines. The 16 signal lines
discussed in the following sections.

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command 
messages. 

Bit Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address 
(range 0–30)
NI-488.2 User Manual for Windows A-2 © National Instruments Corporation



Appendix A GPIB Basics

of 
ked 
 bytes 
 

 

e 

 

s.

r.

 

Handshake Lines
Three hardware handshake lines asynchronously control the transfer 
message bytes between devices. This process is a three-wire interloc
handshake, and it guarantees that devices send and receive message
on the data lines without transmission error. Table A-1 summarizes the
GPIB handshake lines. 

Interface Management Lines
Five hardware lines manage the flow of information across the bus. 
Table A-2 summarizes the GPIB interface management lines. 

Table A-1.  GPIB Handshake Lines

Line Description

NRFD 
(not ready for data)

Listening device is ready/not ready to receive a 
message byte. Also used by the Talker to signal
high-speed GPIB transfers.

NDAC 
(not data accepted)

Listening device has/has not accepted a messag
byte.

DAV 
(data valid)

Talking device indicates signals on data lines are
stable (valid) data.

Table A-2.  GPIB Interface Management Lines

Line Description

ATN 
(attention)

Controller drives ATN true when it sends 
commands and false when it sends data message

IFC 
(interface clear)

System Controller drives the IFC line to initialize 
the bus and make itself CIC.

REN 
(remote enable)

System Controller drives the REN line to place 
devices in remote or local program mode.

SRQ 
(service request)

Any device can drive the SRQ line to 
asynchronously request service from the Controlle

EOI 
(end or identify)

Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it 
conducts a parallel poll.
© National Instruments Corporation A-3 NI-488.2 User Manual for Windows



© National Instruments Corporation B-1 NI-488.2 User Ma
B

 the 

 
ion 

th 
Status Word Conditions

This appendix gives a detailed description of the conditions reported in
status word, ibsta .

For information about how to use ibsta  in your application program, refer
to the NI-488.2 online help, available through Measurement & Automat
Explorer. To start Measurement & Automation Explorer, select Start» 
Programs»National Instruments NI-488.2»Explore GPIB. Then, select 
an interface under Devices and Interfaces in the left window frame, 
right-click, and select NI-488.2 Help to view the online help.

Each bit in ibsta  can be set for device calls (dev), board calls (brd), or bo
(dev, brd). The following table shows the status word layout.

Mnemonic Bit Position Hex Value Type Description

ERR 15 8000 dev, brd NI-488.2 error 

TIMO 14 4000 dev, brd Time limit exceeded 

END 13 2000 dev, brd END or EOS detected 

SRQI 12 1000 brd SRQ interrupt received 

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed 

LOK 7 80 brd Lockout State 

REM 6 40 brd Remote State 

CIC 5 20 brd Controller-In-Charge 

ATN 4 10 brd Attention is asserted 

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State 

DCAS 0 1 brd Device Clear State
nual for Windows



Appendix B Status Word Conditions

ou 

g 

 

e 

 

 the 
 a 

 
or 

ode 

y 
ause 
eck 
ERR (dev, brd)
ERR is set in the status word following any call that results in an error. Y
can determine the particular error by examining the error variable iberr . 
Appendix C, Error Codes and Solutions, describes error codes that are 
recorded in iberr  along with possible solutions. ERR is cleared followin
any call that does not result in an error.

TIMO (dev, brd)
TIMO indicates that the timeout period has expired. TIMO is set in the
status word following any synchronous I/O functions (for example, ibcmd , 
ibrd , ibwrt , Receive , Send, and SendCmds) if the timeout period 
expires before the I/O operation has completed. TIMO is also set in th
status word following an ibwait  or ibnotify  call if the TIMO bit is set 
in the mask parameter and the timeout period expires before any other
specified mask bit condition occurs. TIMO is cleared in all other 
circumstances.

END (dev, brd)
END indicates either that the GPIB EOI line has been asserted or that
EOS byte has been received, if the software is configured to terminate
read on an EOS byte. If the GPIB interface is performing a shadow 
handshake as a result of the ibgts  function, any other function can return
a status word with the END bit set if the END condition occurs before 
during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination m
of a read operation—EOI by itself, the EOS character by itself, or EOI 
plus the EOS character. You can use the ibconfig  function (option 
IbcEndBitIsNormal ) to enable a mode in which the END bit is set onl
when EOI is asserted. In this mode, if the I/O operation completes bec
of the EOS character by itself, END is not set. The application should ch
the last byte of the received buffer to see if it is the EOS character.
NI-488.2 User Manual for Windows B-2 © National Instruments Corporation



Appendix B Status Word Conditions

 the 
 the 

ates 
e 
. A 
erial 
lly 

serial 

/O 

et, 

al 
 by 
rts 
SRQI (brd)
SRQI indicates that a GPIB device is requesting service. SRQI is set 
whenever the GPIB interface is CIC, the GPIB SRQ line is asserted, and
automatic serial poll capability is disabled. SRQI is cleared either when
GPIB interface ceases to be the CIC or when the GPIB SRQ line is 
unasserted. 

RQS (dev)
RQS appears in the status word only after a device-level call and indic
that the device is requesting service. RQS is set whenever one or mor
positive serial poll response bytes have been received from the device
positive serial poll response byte always has bit 6 asserted. Automatic s
polling must be enabled (it is enabled by default) for RQS to automatica
appear in ibsta . You can also wait for a device to request service 
regardless of the state of automatic serial polling by calling ibwait  with a 
mask that contains RQS. Do not issue an ibwait  call on RQS for a device 
that does not respond to serial polls. Use ibrsp  to acquire the serial poll 
response byte that was received. RQS is cleared when all of the stored 
poll response bytes have been reported to you through the ibrsp  function.

CMPL (dev, brd)
CMPL indicates the condition of I/O operations. It is set whenever an I
operation is complete. CMPL is cleared while the I/O operation is in 
progress.

LOK (brd)
LOK indicates whether the interface is in a lockout state. While LOK is s
the EnableLocal  routine or ibloc  function is inoperative for that 
interface. LOK is set whenever the GPIB interface detects that the Loc
Lockout (LLO) message has been sent either by the GPIB interface or
another Controller. LOK is cleared when the System Controller unasse
the Remote Enable (REN) GPIB line.
© National Instruments Corporation B-3 NI-488.2 User Manual for Windows



Appendix B Status Word Conditions

t 
IB 
IB 

l 
 

 

IC 
 
ses 

hen 

N 

ACS 

face 

 talk 
REM (brd)
REM indicates whether the interface is in the remote state. REM is se
whenever the Remote Enable (REN) GPIB line is asserted and the GP
interface detects that its listen address has been sent either by the GP
interface or by another Controller. REM is cleared in the following 
situations:

• When REN becomes unasserted.

• When the GPIB interface as a Listener detects that the Go to Loca
(GTL) command has been sent either by the GPIB interface or by
another Controller.

• When the ibloc  function is called while the LOK bit is cleared in the
status word.

CIC (brd)
CIC indicates whether the GPIB interface is the Controller-In-Charge. C
is set when the SendIFC  routine or ibsic  function is executed either while
the GPIB interface is System Controller or when another Controller pas
control to the GPIB interface. CIC is cleared either when the GPIB 
interface detects Interface Clear (IFC) from the System Controller or w
the GPIB interface passes control to another device.

ATN (brd)
ATN indicates the state of the GPIB Attention (ATN) line. ATN is set 
whenever the GPIB ATN line is asserted, and it is cleared when the AT
line is unasserted.

TACS (brd)
TACS indicates whether the GPIB interface is addressed as a Talker. T
is set whenever the GPIB interface detects that its talk address (and 
secondary address, if enabled) has been sent either by the GPIB inter
itself or by another Controller. TACS is cleared whenever the GPIB 
interface detects the Untalk (UNT) command, its own listen address, a
address other than its own talk address, or Interface Clear (IFC).
NI-488.2 User Manual for Windows B-4 © National Instruments Corporation



Appendix B Status Word Conditions

r. 
s 
 
 

L) 

ger 
tects 
ther 

ar 

 
evice 

tion 
LACS (brd)
LACS indicates whether the GPIB interface is addressed as a Listene
LACS is set whenever the GPIB interface detects that its listen addres
(and secondary address, if enabled) has been sent either by the GPIB
interface itself or by another Controller. LACS is also set whenever the
GPIB interface shadow handshakes as a result of the ibgts  function. 
LACS is cleared whenever the GPIB interface detects the Unlisten (UN
command, its own talk address, Interface Clear (IFC), or that the ibgts  
function has been called without shadow handshake.

DTAS (brd)
DTAS indicates whether the GPIB interface has detected a device trig
command. DTAS is set whenever the GPIB interface, as a Listener, de
that the Group Execute Trigger (GET) command has been sent by ano
Controller. DTAS is cleared on any call immediately following an ibwait  
call, if the DTAS bit is set in the ibwait  mask parameter.

DCAS (brd)
DCAS indicates whether the GPIB interface has detected a device cle
command. DCAS is set whenever the GPIB interface detects that the 
Device Clear (DCL) command has been sent by another Controller, or
whenever the GPIB interface as a Listener detects that the Selected D
Clear (SDC) command has been sent by another Controller. 

If you use the ibwait  or ibnotify  function to wait for DCAS and the 
wait is completed, DCAS is cleared from ibsta  after the next NI-488.2 
call. The same is true of reads and writes. If you call a read or write func
such as ibwrt  or Send, and DCAS is set in ibsta , the I/O operation is 
aborted. DCAS is cleared from ibsta  after the next NI-488.2 call.
© National Instruments Corporation B-5 NI-488.2 User Manual for Windows



© National Instruments Corporation C-1 NI-488.2 User Ma
C

 

Error Codes and Solutions

This appendix lists a description of each error, some conditions under
which it might occur, and possible solutions.

The following table lists the GPIB error codes.

Error 
Mnemonic

iberr 
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB interface to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB interface not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB interface not System Controller as 
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB interface

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem
nual for Windows



Appendix C Error Codes and Solutions

 
ly. 

8.2 

ace 

een 

le 
nt 

 

 is 

d 
EDVR (0)
EDVR is returned when the interface or device name passed to ibfind , 
or the interface index passed to ibdev , cannot be accessed. The global 
variable ibcntl  contains an error code. This error occurs when you try to
access an interface or device that is not installed or configured proper

EDVR is also returned if an invalid unit descriptor is passed to any 
traditional NI-488.2 call. 

Solutions
Possible solutions for this error are as follows:

• Use ibdev  to open a device without specifying its symbolic name.

• Use only device or interface names that are configured in the NI-48
Configuration utility as parameters to the ibfind  function.

• Use the NI-488.2 Troubleshooting Wizard to ensure that each interf
you want to access is working properly. To start the NI-488.2 
Troubleshooting Wizard, first open Measurement & Automation 
Explorer by selecting Start»Programs»National Instruments 
NI-488.2»Explore GPIB. Then, select Measurement & Automation 
in the left window frame, and choose Help»Troubleshooting» 
NI-488.2 Troubleshooting Wizard.

• Use the unit descriptor returned from ibdev  or ibfind  as the first 
parameter in subsequent traditional NI-488.2 calls. Examine the 
variable before the failing function to make sure its value has not b
corrupted.

• Refer to the NI-488.2 online help for the NI-488.2 software, availab
through Measurement & Automation Explorer. To start Measureme
& Automation Explorer, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Then, select a GPIB interface
under Devices and Interfaces in the left window frame, right-click, 
and select NI-488.2 Help to view the online help.

ECIC (1)
ECIC is returned when one of the following board functions or routines
called while the interface is not CIC:

• Any device-level traditional NI-488.2 calls that affect the GPIB.

• Any board-level traditional NI-488.2 calls that issue GPIB comman
bytes: ibcmd , ibcmda , ibln , and ibrpp.
NI-488.2 User Manual for Windows C-2 © National Instruments Corporation



Appendix C Error Codes and Solutions

 

rs 
 

 
PIB 
t 

and 
. 

B 

f 

s 

ller.
• ibcac  and ibgts.

• Any NI-488.2 multi-device calls that issue GPIB command bytes: 
SendCmds, PPoll , Send, and Receive.

Solutions
Possible solutions for this error are as follows:

• Use ibsic  or SendIFC  to make the GPIB interface become CIC on
the GPIB.

• Use ibrsc  1 to make sure your GPIB interface is configured as 
System Controller.

• In multiple CIC situations, always be certain that the CIC bit appea
in the status word ibsta  before attempting these calls. If it does not
appear, you can perform an ibwait  (for CIC) call to delay further 
processing until control is passed to the interface.

ENOL (2)
ENOL usually occurs when a write operation is attempted with no 
Listeners addressed. For a device write, ENOL indicates that the GPIB
address configured for that device in the software does not match the G
address of any device connected to the bus, that the GPIB cable is no
connected to the device, or that the device is not powered on. 

ENOL can occur in situations where the GPIB interface is not the CIC 
the Controller asserts ATN before the write call in progress has ended

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB address of your device matches the GPI
address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd  to address your device.

• Check your cable connections and make sure at least two-thirds o
your devices are powered on.

• Call ibpad  (or ibsad , if necessary) to match the configured addres
to the device switch settings.

• Reduce the write byte count to that which is expected by the Contro
© National Instruments Corporation C-3 NI-488.2 User Manual for Windows



Appendix C Error Codes and Solutions

 
his 
to 

lling 

he 

nd 

id.
EADR (3)
EADR occurs when the GPIB interface is CIC and is not properly 
addressing itself before read and write functions. This error is usually 
associated with board-level functions.

EADR is also returned by the function ibgts  when the shadow-handshake
feature is requested and the GPIB ATN line is already unasserted. In t
case, the shadow handshake is not possible and the error is returned 
notify you of that fact. 

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB interface is addressed correctly before ca
ibrd , ibwrt , RcvRespMsg, or SendDataBytes .

• Avoid calling ibgts  except immediately after an ibcmd  call. 
(ibcmd causes ATN to be asserted.)

EARG (4)
EARG results when an invalid argument is passed to a function call. T
following are some examples:

• ibtmo  called with a value not in the range 0 through 17.

• ibeos  called with meaningless bits set in the high byte of the seco
parameter.

• ibpad  or ibsad  called with invalid addresses.

• ibppc  called with invalid parallel poll configurations.

• A board-level traditional NI-488.2 call made with a valid device 
descriptor, or a device-level traditional NI-488.2 call made with a 
board descriptor.

• A multi-device NI-488.2 call made with an invalid address.

• PPollConfig  called with an invalid data line or sense bit.

Solutions
Possible solutions for this error are as follows:

• Make sure that the parameters passed to the NI-488.2 call are val

• Do not use a device descriptor in a board function or vice-versa.
NI-488.2 User Manual for Windows C-4 © National Instruments Corporation



Appendix C Error Codes and Solutions

y 

 

. 
 
 call 

 the 

re 

d in 
 not 

s by 
ESAC (5)
ESAC results when ibsic , ibsre , SendIFC , or EnableRemote  is called 
when the GPIB interface does not have System Controller capability. 

Solutions
Give the GPIB interface System Controller capability by calling ibrsc  1 
or by using the NI-488.2 Configuration utility to configure that capabilit
into the software.

EABO (6)
EABO indicates that an I/O operation has been canceled, usually due
to a timeout condition. Other causes are calling ibstop  or receiving the 
Device Clear message from the CIC while performing an I/O operation
Frequently, the I/O is not progressing (the Listener is not continuing to
handshake or the Talker has stopped talking), or the byte count in the
which timed out was more than the other device was expecting. 

Solutions
Possible solutions for this error are as follows:

• Use the correct byte count in input functions or have the Talker use
END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data befo
you request data.

ENEB (7)
ENEB occurs when no GPIB interface exists at the I/O address specifie
the configuration program. This problem happens when the interface is
physically plugged into the system, the I/O address specified during 
configuration does not match the actual interface setting, or there is a 
system conflict with the base I/O address.

Solutions
Make sure there is a GPIB interface in your computer that is properly 
configured both in hardware and software using a valid base I/O addres
running the NI-488.2 Troubleshooting Wizard. To run the NI-488.2 
© National Instruments Corporation C-5 NI-488.2 User Manual for Windows



Appendix C Error Codes and Solutions

2 

 a 

fore 

r 
 

Troubleshooting Wizard, select Start»Programs»National Instruments 
NI-488.2»Explore GPIB.Then, select Measurement & Automation in 
the left window frame, and choose Help»Troubleshooting»NI-488.2 
Troubleshooting Wizard.

EDMA (8)
EDMA occurs if a system DMA error is encountered when the NI-488.
software attempts to transfer data over the GPIB using DMA.

Solutions
Possible solutions for this error are as follows:

• You can correct the EDMA problem in the hardware by using the 
NI-488.2 Configuration utility to reconfigure the hardware to not use
DMA resource.

• You can correct the EDMA problem in the software by using ibdma  to 
disable DMA.

EOIP (10)
EOIP occurs when an asynchronous I/O operation has not finished be
some other call is made. During asynchronous I/O, you can only use 
ibstop , ibnotify , ibwait , and ibonl  or perform other non-GPIB 
operations. If any other call is attempted, EOIP is returned. 

Solutions
Resynchronize the driver and the application before making any furthe
NI-488.2 calls. Resynchronization is accomplished by using one of the
following functions: 

ibnotify If the ibsta  value passed to the ibnotify  callback 
contains CMPL, the driver and application are 
resynchronized.

ibwait If the returned ibsta  contains CMPL, the driver and 
application are resynchronized.

ibstop The I/O is canceled; the driver and application are 
resynchronized.
NI-488.2 User Manual for Windows C-6 © National Instruments Corporation



Appendix C Error Codes and Solutions

er 

n 
are 

e 

rect.

ns. 
ther 
tes 

and 
ibonl The I/O is canceled and the interface is reset; the driv
and application are resynchronized.

ECAP (11)
ECAP results when your GPIB interface lacks the ability to carry out a
operation or when a particular capability has been disabled in the softw
and a call is made that requires the capability.

Solutions
Check the validity of the call, or make sure your GPIB interface and th
driver both have the needed capability.

EFSO (12)
EFSO results when an ibrdf  or ibwrtf  call encounters a problem 
performing a file operation. Specifically, this error indicates that the 
function is unable to open, create, seek, write, or close the file being 
accessed. The specific operating system error code for this condition 
is contained in ibcntl .

Solutions
Possible solutions for this error are as follows:

• Make sure the filename, path, and drive that you specified are cor

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)
EBUS results when certain GPIB bus errors occur during device functio
All device functions send command bytes to perform addressing and o
bus management. Devices are expected to accept these command by
within the time limit specified by the default configuration or the ibtmo  
function. EBUS results if a timeout occurred while sending these comm
bytes. 
© National Instruments Corporation C-7 NI-488.2 User Manual for Windows



Appendix C Error Codes and Solutions

ts 

es, 

 
een 
es are 

 

 the 
ing 

use 
he 

ne 
Solutions
Possible solutions for this error are as follows:

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off instrumen
on the GPIB.

• If the timeout period is too short for the driver to send command byt
increase the timeout period.

ESTB (15)
ESTB is reported only by the ibrsp  function. ESTB indicates that one or
more serial poll status bytes received from automatic serial polls have b
discarded because of a lack of storage space. Several older status byt
available; however, the oldest is being returned by the ibrsp  call.

Solutions
Possible solutions for this error are as follows:

• Call ibrsp  more frequently to empty the queue.

• Disable autopolling with the ibconfig  function (option 
IbcAUTOPOLL) or the NI-488.2 Configuration utility. To start the 
NI-488.2 Configuration utility, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. Select a GPIB interface under
Devices and Interfaces in the left window frame, right-click, and 
choose Properties.

ESRQ (16)
ESRQ can only be returned by a device-level ibwait  call with RQS set in 
the mask. ESRQ indicates that a wait for RQS is not possible because
GPIB SRQ line is stuck on. This situation can be caused by the follow
events:

• Usually, a device unknown to the software is asserting SRQ. Beca
the software does not know of this device, it can never serial poll t
device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ li
to be asserted.

• A cable problem might exist involving the SRQ line.
NI-488.2 User Manual for Windows C-8 © National Instruments Corporation



Appendix C Error Codes and Solutions

m, 
the 

g 

tions:

.

 

f 
e 
Although the occurrence of ESRQ warns you of a definite GPIB proble
it does not affect GPIB operations, except that you cannot depend on 
ibsta  RQS bit while the condition lasts.

Solutions
Check to see if other devices not used by your application are assertin
SRQ. Disconnect them from the GPIB if necessary.

ETAB (20)
ETAB occurs only during the FindLstn  and FindRQS functions. ETAB 
indicates that there was some problem with a table used by these func

• In the case of FindLstn , ETAB means that the given table did not 
have enough room to hold all the addresses of the Listeners found

• In the case of FindRQS, ETAB means that none of the devices in the
given table were requesting service.

Solutions
In the case of FindLstn , increase the size of result arrays. In the case o
FindRQS, check to see if other devices not used by your application ar
asserting SRQ. Disconnect them from the GPIB if necessary.
© National Instruments Corporation C-9 NI-488.2 User Manual for Windows



© National Instruments Corporation D-1 NI-488.2 User Ma
D

ome 

ed 
to a 

 by 
r 

f 
Windows 98/95: 
Troubleshooting and 
Common Questions

This appendix describes how to troubleshoot problems and answers s
common questions for Windows 98/95 users.

Troubleshooting EDVR Error Conditions
In some cases, NI-488.2 calls may return with the ERR bit set in ibsta  and 
the value EDVR in iberr . The value stored in ibcntl  is useful in 
troubleshooting the error condition.

EDVR Error Condition with ibcntl Set to 0xE028002C (–534249428)
If a call is made with an interface number that is within the range of allow
interface numbers (typically 0 to 3), but which has not been assigned 
GPIB interface, an EDVR error condition occurs with ibcntl  set to 
0xE028002C. You can assign an interface number to a GPIB interface
configuring the NI-488.2 software and selecting an interface name. Fo
information about how to configure the NI-488.2 software, refer to the 
online help in the NI-488.2 Configuration utility. To start the NI-488.2 
Configuration utility, open Measurement & Automation Explorer by 
selecting Start»Programs»National Instruments NI-488.2»Explore 
GPIB. Select a GPIB interface under Devices and Interfaces in the left 
window frame, right-click, and choose Properties.

EDVR Error Condition with ibcntl Set to 0xE0140025 (–535560155)
If a call is made with an interface number that is not within the range o
allowed interface numbers (typically 0 to 3), an EDVR error condition 
occurs with ibcntl  set to 0xE0140025. 
nual for Windows



Appendix D Windows 98/95: Troubleshooting and Common Questions

ice 
ror 

or 

+ 

lled 
are, 
g 

pted 
 

 an 

d 
EDVR Error Condition with ibcntl Set to 0xE0140035 (–535560139)
If a call is made with a device name that is not listed in the logical dev
templates that are part of the NI-488.2 Configuration utility, an EDVR er
condition occurs with ibcntl  set to 0xE0140035.

EDVR Error Condition with ibcntl Set to 0xE0320029 (–533594071) or 
0xE1050029 (–519765975)

If a call is made with an interface number that is assigned to a GPIB 
interface that is unusable because of a resource conflict, an EDVR err
condition occurs with ibcntl  set to 0xE0320029 or 0xE1050029. This 
error is also returned if you remove a PCMCIA-GPIB or PCMCIA-GPIB
while the driver is accessing it or if you try to access a PCMCIA-GPIB 
when 32-bit PCMCIA drivers are not enabled.

EDVR Error Condition with ibcntl Set to 0xE0140004 (–535560188)
This error might occur if the GPIB interface has not been correctly insta
and detected by Windows. For details on how to install the GPIB hardw
refer to the online GPIB hardware guide, which is available by choosin
View Documentation from the NI-488.2 for Windows CD autorun screen.

EDVR Error Condition with ibcntl set to 0xE1030043 (–519897021)
This error occurs if you have enabled DOS NI-488.2 support and attem
to run an existing NI-488.2 DOS application that was compiled with an
older, unsupported DOS language interface.

Troubleshooting Device Manager Problems
If you are having trouble with your GPIB interface, use the Windows 
Device Manager to troubleshoot your problems. To start the Device 
Manager, double-click on theSystem icon under Start»Settings»Control 
Panel. In the System Properties box that appears, select the Device 
Manager tab and click on the View devices by type button at the top of 
the tab.

Check to see if the interface listing in the Device Manager appears with
exclamation point (!) or X by it. If it does, click on the interface listing, 
and then click on the Properties button to view the General tab for the 
interface. In the Device Status section, look for the status description an
NI-488.2 User Manual for Windows D-2 © National Instruments Corporation



Appendix D Windows 98/95: Troubleshooting and Common Questions

ut 

IB 
 of 

ce, 

r is 
 

w up 

bling 
le for 

. 
nal 

re 
status code number. Locate the error code in the following list to find o
why your GPIB interface is not working properly:

• Code 9: Windows had a problem reading information from the GP
interface. This problem can occur if you are using an older revision
the AT-GPIB/TNT+ or AT-GPIB/TNT (PnP) interface. Contact 
National Instruments to upgrade your GPIB interface.

• Code 22: The GPIB interface is disabled. To enable the GPIB interfa
check the appropriate configuration checkbox in the Device Usage 
section of the General tab.

• Code 24: The GPIB interface is not present, or the Device Manage
unaware that the GPIB interface is present. To solve this problem,
select the interface in the Device Manager, and click on the Remove 
button. Next, click on the Refresh button. At this point, the system 
rescans the installed hardware, and the GPIB interface should sho
without any problems. If the problem persists, contact National 
Instruments.

• Code 27: Windows was unable to assign the GPIB interface any 
resources. To solve this problem, free up system resources by disa
other unnecessary hardware so that enough resources are availab
the GPIB interface.

Common Questions
What do I do if my GPIB hardware is listed in the Windows Device 
Manager with a circled X or an exclamation point (!) overlaid on it?

Refer to the Troubleshooting Device Manager Problems section of this 
appendix for specific information about what might cause this problem
If you have already completed the troubleshooting steps, contact Natio
Instruments.

How can I determine which type of GPIB hardware I have installed?

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. The 
Measurement & Automation Explorer lists your installed GPIB hardwa
under Devices and Interfaces.

How can I determine which version of the NI-488.2 software I have 
installed?

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. Select 
© National Instruments Corporation D-3 NI-488.2 User Manual for Windows



Appendix D Windows 98/95: Troubleshooting and Common Questions

s.

.2 

0 

m 
ace 

ou 
, 
Measurement & Automation in the left window frame, then choose 
Help»About Measurement & Automation Explorer. In the About 
Measurement & Automation Explorer dialog box, click on the System 
Info  button. Then, select the Software tab. The Name, Type, Value, and 
Description columns appear, describing the NI-488.2 software attribute

How do I get started?

Use the NI-488.2 Getting Started Wizard to get started with the NI-488
software. Open Measurement & Automation Explorer by selecting 
Start»Programs»National Instruments NI-488.2»Explore GPIB, select 
Measurement & Automation in the left window frame, then choose 
Help»Getting Started»NI-488.2 Getting Started Wizard and follow the 
instructions.

How do I troubleshoot problems?

Run the NI-488.2 Troubleshooting Wizard. Open Measurement & 
Automation Explorer by selecting Start»Programs»National 
Instruments NI-488.2»Explore GPIB. From there, select Measurement 
& Automation  in the left window frame, then choose Help» 
Troubleshooting»NI-488.2 Troubleshooting Wizard.

How many GPIB interfaces can I configure for use with my NI-488.2 
software?

You can configure the NI-488.2 software to communicate with up to 10
GPIB interfaces.

How many devices can I configure for use with my NI-488.2 software?

The NI-488.2 software provides a total of 1,024 logical devices for 
applications to use. The default number of devices is 32. The maximu
number of physical devices you should connect to a single GPIB interf
is 14, or fewer, depending on your system configuration.

Are interrupts and DMA required for the NI-488.2 software?

Neither interrupts nor DMA are required under Window 98/95, unless y
are using a PCMCIA-GPIB or GPIB hardware with Analyzer capability
in which case at least one interrupt level is required.
NI-488.2 User Manual for Windows D-4 © National Instruments Corporation



Appendix D Windows 98/95: Troubleshooting and Common Questions

are 

 

 

er. 
ment. 

vel 

.

r 
How can I determine if my GPIB hardware and NI-488.2 software are 
installed properly?

Run the NI-488.2 Troubleshooting Wizard to make sure that your hardw
and software are correctly installed.

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. From there, 
select Measurement & Automation in the left window frame, then choose
Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

When should I use the Interactive Control utility?

You can use the Interactive Control utility to test and verify instrument 
communication, troubleshoot problems, and develop your application.
For more information, refer to Chapter 6, Interactive Control Utility.

How do I use an NI-488.2 language interface?

For information about using NI-488.2 language interfaces, refer to 
Chapter 3, Developing Your NI-488.2 Application.

What do I need to know to communicate properly with my GPIB 
instrument?

Refer to the documentation that came from the instrument manufactur
The command sequences you use are dependent on the specific instru
The documentation for each instrument should include the GPIB 
commands you need to communicate with it. In most cases, device-le
traditional NI-488.2 calls are sufficient for communicating with 
instruments. For more information, refer to Chapter 3, Developing Your 
NI-488.2 Application.

How can I easily start communicating with my GPIB instrument?

Use the NI-488.2 Communicator for simple instrument communication

To start the NI-488.2 Communicator, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. From there, right-click on the 
GPIB instrument in the right window frame. Then, choose Communicate 
With Instrument . For more information about communicating with you
GPIB instrument, refer to the section Communicate with a GPIB 
Instrument in Chapter 2, Measurement & Automation Explorer.
© National Instruments Corporation D-5 NI-488.2 User Manual for Windows



Appendix D Windows 98/95: Troubleshooting and Common Questions

e 
What can I do to check for errors in my NI-488.2 application?

Examine the value of ibsta  after each NI-488.2 call. If a call fails, the 
ERR bit of ibsta  is set and an error code is stored in iberr . For more 
information about global status variables, refer to Chapter 4, Debugging 
Your Application.

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of th
NI-488.2 Troubleshooting Wizard. Run the NI-488.2 Troubleshooting 
Wizard. Open Measurement & Automation Explorer by selecting 
Start»Programs»National Instruments NI-488.2»Explore GPIB. From 
there, select Measurement & Automation in the left window frame, then 
choose Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.
NI-488.2 User Manual for Windows D-6 © National Instruments Corporation



© National Instruments Corporation E-1 NI-488.2 User Ma
E

ome 

 
IB 

ls to 
he 
r. 

lity.

ices 

e 
tly, 
Windows NT: Troubleshooting 
and Common Questions

This appendix describes how to troubleshoot problems and answers s
common questions for Windows NT users.

Using Windows NT Diagnostic Tools
There are many reasons why the NI-488.2 driver might not load. If the
software is not properly installed or if there is a conflict between the GP
hardware and the other hardware in the system, the NI-488.2 driver fai
start. Two Windows NT utilities are useful in determining the source of t
problem: the Devices applet in the Control Panel, and the Event Viewe
The following sections describe information available through each uti

Examining NT Devices to Verify the Installation
To verify whether the devices are installed correctly (that is, that the dev
are started), select Start»Settings»Control Panel and double-click on the 
Devices icon. 

This utility lists all of the devices detected by Windows NT. Each devic
has a status associated with it. If the NI-488.2 driver is installed correc
the following lines appear in the list of NT devices:

Device Status Started

GPIB Board Class Driver Started Automatic

GPIB Device Class Driver Started Automatic

You should also see one or more lines similar to the following:

Device Status Started

GPIB Port Driver (AT-GPIB) **** System

GPIB Port Driver (PCI-GPIB) **** System

The GPIB Board Class Driver and the GPIB Device Class Driver should 
have a status of Started . If not, refer to the next section, Examining the 
NT System Log Using the Event Viewer.
nual for Windows



Appendix E Windows NT: Troubleshooting and Common Questions

 

re 
At least one of the GPIB Port Drivers listed by the Devices applet should 
have a status of Started . If not, refer to the next section, Examining the 
NT System Log Using the Event Viewer.

If the GPIB Class Driver lines are not present or at least one GPIB Port
Driver line is not present, the NI-488.2 software is not installed properly. 
You should reinstall the NI-488.2 software from the NI-488.2 for 
WindowsCD.

Examining the NT System Log Using the Event Viewer
Windows NT maintains a system log. If the NI-488.2 driver is unable to 
start, it records entries in the system log explaining why it failed to start. 
To examine the system log through the Event Viewer utility, select Start» 
Programs»Administrative Tools»Event Viewer. 

Events that might appear in the system log include the following:

• The system cannot locate the device file for one or more of the devices 
that make up the NI-488.2 driver and an event is logged that The 

system cannot find the file specified . In this case, the 
NI-488.2 software is not installed properly. You should reinstall the 
NI-488.2 software from the NI-488.2 for Windows CD.

• A conflict exists between the GPIB hardware and the other hardwa
in the system. If this is the case, an event is logged that indicates the 
nature of the resource conflict. To correct this conflict, run the 
Troubleshooting Wizard and follow its instructions for resolving 
resource conflicts. To run the Troubleshooting Wizard, first open 
Measurement & Automation Explorer by selecting Start»Programs» 
National Instruments NI-488.2»Explore GPIB. From there, select 
Measurement & Automation in the left window frame, then choose 
Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

Common Questions
How can I determine which type of GPIB hardware I have installed?

Run the NI-488.2 Troubleshooting Wizard. It lists all the known GPIB 
hardware.

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. From there, 
select Measurement & Automation in the left window frame, then choose 
Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.
NI-488.2 User Manual for Windows E-2 © National Instruments Corporation



Appendix E Windows NT: Troubleshooting and Common Questions

s.

ur 

are 

 

 

How can I determine which version of the NI-488.2 software I have 
installed?

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. Select 
Measurement & Automation in the left window frame, then choose 
Help»About Measurement & Automation Explorer. In the About 
Measurement & Automation Explorer dialog box, click on the System 
Info  button. Then select the Software tab. The Name, Type, Value, and 
Description columns appear, describing the NI-488.2 software attribute

How many GPIB interfaces can I configure for use with my NI-488.2 
software?

You can configure the NI-488.2 software to communicate with up to fo
GPIB interfaces.

How many devices can I configure for use with my NI-488.2 software?

The NI-488.2 software provides a total of 100 logical devices for 
applications to use. The default number of devices is 32.

Are interrupts and DMA required with the NI-488.2 software?

Interrupts are required, but DMA is not.

How can I determine if my GPIB hardware and NI-488.2 software are 
installed properly?

Run the NI-488.2 Troubleshooting Wizard to make sure that your hardw
and software are correctly installed.

Open Measurement & Automation Explorer by selecting Start» 
Programs»National Instruments NI-488.2»Explore GPIB. From there, 
select Measurement & Automation in the left window frame, then choose
Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

When should I use the Interactive Control utility?

You can use the Interactive Control utility to test and verify instrument 
communication, troubleshoot problems, and develop your application.
For more information, refer to Chapter 6, Interactive Control Utility.

How do I use an NI-488.2 language interface?

For information about using NI-488.2 language interfaces, refer to 
Chapter 3, Developing Your NI-488.2 Application.
© National Instruments Corporation E-3 NI-488.2 User Manual for Windows



Appendix E Windows NT: Troubleshooting and Common Questions

er. 
ment. 

vel 

.

e 
What do I need to know to communicate properly with my GPIB 
instrument?

Refer to the documentation that came from the instrument manufactur
The command sequences you use are dependent on the specific instru
The documentation for each instrument should include the GPIB 
commands you need to communicate with it. In most cases, device-le
traditional NI-488.2 calls are sufficient for communicating with 
instruments. For more information, refer to Chapter 3, Developing Your 
NI-488.2 Application.

How can I easily start communicating with my GPIB instrument?

Use the NI-488.2 Communicator for simple instrument communication

To start the NI-488.2 Communicator, select Start»Programs»National 
Instruments NI-488.2»Explore GPIB. From there, right-click on the 
GPIB instrument in the right window frame. Then, choose Communicate 
With Instrument .

What can I do to check for errors in my NI-488.2 application?

Examine the value of ibsta  after each NI-488.2 call. If a call fails, the 
ERR bit of ibsta  is set and an error code is stored in iberr . For more 
information about global status variables, refer to Chapter 4, Debugging 
Your Application.

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of th
NI-488.2 Troubleshooting Wizard. Open Measurement & Automation 
Explorer by selecting Start»Programs»National Instruments NI-488.2» 
Explore GPIB. From there, select Measurement & Automation in the 
left window frame, then choose Help»Troubleshooting»NI-488.2 
Troubleshooting Wizard.
NI-488.2 User Manual for Windows E-4 © National Instruments Corporation



© National Instruments Corporation F-1 NI-488.2 User Ma
F

nd 
TP 
 
ion 
ne of 
ers, 

 
t 

 
n. 

ring 
Technical Support Resources

National Instruments offers technical support through electronic, fax, a
telephone systems. The electronic services include our Web site, an F
site, and a fax-on-demand system. If you have a hardware or software
problem, please first try the electronic support systems. If the informat
available on these systems does not answer your questions, contact o
our technical support centers, which are staffed by applications engine
for support by telephone and fax. To comment on the documentation 
supplied with our products, send e-mail to techpubs@natinst.com .

Web Site
The InstrumentationWeb address is http://www.natinst.com . 

From this Web site you can connect to our Web sites around the world
(http://www.natinst.com/niglobal/ ) and access technical suppor
(http://www.natinst.com/support/ ).

FTP Site
To access our FTP site, log in to our Internet host, ftp.natinst.com , 
asanonymous  and use your e-mail address, such as 
yourname@anywhere.com , as your password. The support files and 
documents are located in the \support  directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a
library of documents in English on a wide range of technical informatio
You can access Fax-on-Demand from a touch-tone telephone at 
512 418 1111.

E-Mail Support
You can submit technical support questions to the applications enginee
team through e-mail at support@natinst.com . Remember to include 
your name, address, and phone number so we can contact you with 
solutions and suggestions. 
nual for Windows



re 
m 
Telephone and Fax Support
National Instruments has branch offices all over the world. Use the 
following list to find the technical support number for your country. If the
is no National Instruments office in your country, contact the source fro
which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277

Austria 0662 45 79 90 0 0662 45 79 90 19

Belgium 02 757 00 20 02 757 03 11

Brazil 011 284 5011 011 288 8528

Canada (Ontario) 905 785 0085 905 785 0086

Canada (Québec) 514 694 8521 514 694 4399

Denmark 45 76 26 00 45 76 26 02

Finland 09 725 725 11 09 725 725 55

France 0 1 48 14 24 24 0 1 48 14 24 14

Germany 089 741 31 30 089 714 60 35

Hong Kong 2645 3186 2686 8505

India 91805275406 91805275410

Israel 03 6120092 03 6120095

Italy 02 413091 02 4139215

Japan 03 5472 2970 03 5472 2977

Korea 02 596 7456 02 596 7455

Mexico (D.F.) 5 280 7625 5 520 3282

Mexico (Monterrey) 8 357 7695 8 365 8543

Netherlands 0348 433466 0348 430673

Norway 32 84 84 00 32 84 86 00

Singapore 2265886 2265887

Spain (Madrid) 91 640 0085 91 640 0533

Spain (Barcelona) 93 582 0251 93 582 4370

Sweden 08 587 895 00 08 730 43 70

Switzerland 056 200 51 51 056 200 51 55

Taiwan 02 2377 1200 02 2737 4644

United Kingdom 01635 523545 01635 523154

United States 512 795 8248 512 794 5678
NI-488.2 User Manual for Windows F-2 © National Instruments Corporation



Glossary
evices 

n the 

to the 

line. 
Prefix Meaning Value

n- nano- 10–9

m- milli- 10–3

M- mega- 106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and all d
use it to receive commands. See source handshake and handshake.

access board The GPIB board that controls and communicates with the devices o
bus that are attached to it.

ANSI American National Standards Institute.

API Application Programming Interface

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect 
execution of a program.

automatic serial 
polling

A feature of the GPIB software in which serial polls are executed 
automatically by the driver whenever a device asserts the GPIB SRQ 
Also called autopolling.

B

base I/O address See I/O address.

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation. 
© National Instruments Corporation G-1 NI-488.2 User Manual for Windows



Glossary

d is 

sed 
 so 

l 

ne 

 one 

ard 
me 

erting 

or 
C

CFE Configuration Enable. The GPIB command which precedes CFGn an
used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and are u
to configure all devices for the number of meters of cable in the system
HS488 transfers occur without errors.

CIC Controller-In-Charge. The device that manages the GPIB by sending 
interface messages to other devices.

CPU Central processing unit.

D

DAV Data Valid. One of the three GPIB handshake lines. See handshake.

DCL Device Clear. The GPIB command used to reset the device or interna
functions of all devices. See SDC.

device-level function A function that combines several rudimentary board operations into o
function so that the user does not have to be concerned with bus 
management or other GPIB protocol matters. 

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes from
device to another.

DLL Dynamic link library.

DMA Direct memory access. High-speed data transfer between the GPIB bo
and memory that is not handled directly by the CPU. Not available on so
systems. See programmed I/O.

driver Device driver software installed within the operating system. 

E

END or END Message A message that signals the end of a data string. END is sent by ass
the GPIB End or Identify (EOI) line with the last data byte.

EOI A GPIB line that signals either the last byte of a data message (END) 
the parallel poll Identify (IDY) message.
NI-488.2 User Manual for Windows G-2 © National Instruments Corporation



Glossary

ata 

 is 

or 

ss 

r in 

nction 
AV, 
 to 

ously 

ard 
EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte of a d
message.

EOT End of transmission.

ESB The Event Status bit. Part of the IEEE 488.2-defined status byte which
received from a device responding to a serial poll.

F

FIFO First-in-first-out.

G

GET Group Execute Trigger. The GPIB command used to trigger a device 
internal function of an addressed Listener.

GPIB General Purpose Interface Bus is the common name for the 
communications interface system defined in ANSI/IEEE 
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1992. 

GPIB address The address of a device on the GPIB, composed of a primary addre
(MLA and MTA) and perhaps a secondary address (MSA). The GPIB 
board has both a GPIB address and an I/O address.

GPIB board Refers to the National Instruments family of GPIB interfaces.

GTL Go To Local. The GPIB command used to place an addressed Listene
local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the source handshake fu
of one device to the acceptor handshake function of another device. D
NRFD, and NDAC, three GPIB lines, are used in an interlocked fashion
signal the phases of the transfer, so that bytes can be sent asynchron
(for example, without a clock) at the speed of the slowest device.

For more information about handshaking, refer to the ANSI/IEEE Stand
488.1-1987.
© National Instruments Corporation G-3 NI-488.2 User Manual for Windows



Glossary

l 16 is 

ses 
n 

 

a 

ins 

ed to 

on the 

 
ress 
hex Hexadecimal; a number represented in base 16. For example, decima
hex 10.

high-level function See device-level function.

HS488 A high-speed data transfer protocol for IEEE 488. This protocol increa
performance for GPIB reads and writes up to 8 Mbytes/s, depending o
your system.

Hz Hertz.

I

ibcnt After each NI-488 I/O function, this global variable contains the actual
number of bytes transmitted.

iberr A global variable that contains the specific error code associated with 
function call that failed.

ibsta At the end of each function call, this global variable (status word) conta
status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and us
manage the GPIB. 

I/O Input/Output. In this manual, it is the transmission of commands or 
messages between the system via the GPIB board and other devices 
GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port add
or board address.

ISA Industry Standard Architecture.

ist An Individual Status bit of the status byte used in the Parallel Poll 
Configure function.

K

KB Kilobytes.
NI-488.2 User Manual for Windows G-4 © National Instruments Corporation



Glossary

s or 

ay 

m 

on. 

e 

a 

 to be 
he 
ss. 
alk 
L

LAD Listen address. See MLA.

language interface Code that enables an application program that uses NI-488 function
NI-488.2 routines to access the driver.

Listener A GPIB device that receives data messages from a Talker.

LLO Local Lockout. The GPIB command used to tell all devices that they m
or should ignore remote (GPIB) data messages or local (front panel) 
controls, depending on whether the device is in local or remote progra
mode.

low-level function A rudimentary board or device function that performs a single operati

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byt
which is received from a device responding to a serial poll.

MB Megabytes.

memory-resident Resident in RAM.

MLA My Listen Address. A GPIB command used to address a device to be 
Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address. The GPIB command used to address a device
a Listener or a Talker when extended (two-byte) addressing is used. T
complete address is a MLA or MTA address followed by an MSA addre
There are 31 secondary addresses for a total of 961 distinct listen or t
addresses for devices.

MTA My Talk Address. A GPIB command used to address a device to be a 
Talker. It can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task. 
© National Instruments Corporation G-5 NI-488.2 User Manual for Windows



Glossary

red 

red 
 are 

 

ch the 

r 
N

NDAC Not Data Accepted. One of the three GPIB handshake lines. See handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines. 
Seehandshake.

P

parallel poll The process of polling all configured devices at once and reading a 
composite poll response. See serial poll.

PC Personal computer.

PCI Peripheral Component Interconnect.

PIO See programmed I/O.

PPC Parallel Poll Configure. It is the GPIB command used to configure an 
addressed Listener to participate in polls.

PPD Parallel Poll Disable. It is the GPIB command used to disable a configu
device from participating in polls. There are 16 PPD commands.

PPE Parallel Poll Enable. It is the GPIB command used to enable a configu
device to participate in polls and to assign a DIO response line. There
16 PPE commands.

PPU Parallel Poll Unconfigure. It is the GPIB command used to disable any
device from participating in polls.

programmed I/O Low-speed data transfer between the GPIB board and memory in whi
CPU moves each data byte according to program instructions. SeeDMA.

R

RAM Random-access memory.

resynchronize The GPIB software and the user application must resynchronize afte
asynchronous I/O operations have completed.

RQS Request Service.
NI-488.2 User Manual for Windows G-6 © National Instruments Corporation



Glossary

evice 

value, 
ared 

time. 

ers use 
s. 

and.

ce to 

 that 

 

ocess 
ntil 

 of the 
an 
S

s Seconds.

SDC Selected Device Clear. The GPIB command used to reset internal or d
functions of an addressed Listener. See DCL.

semaphore An object that maintains a count between zero and some maximum 
limiting the number of threads that are simultaneously accessing a sh
resource.

serial poll The process of polling and reading the status byte of one device at a 
See parallel poll.

service request See SRQ.

source handshake The GPIB interface function that transmits data and commands. Talk
this function to send data, and the Controller uses it to send command
Seeacceptor handshake and handshake.

SPD Serial Poll Disable. The GPIB command used to cancel an SPE comm

SPE Serial Poll Enable. The GPIB command used to enable a specific devi
be polled. That device must also be addressed to talk. See SPD.

SRQ Service Request. The GPIB line that a device asserts to notify the CIC
the device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially
polled.

status word See ibsta .

synchronous Refers to the relationship between the GPIB driver functions and a pr
when executing driver functions is predictable; the process is blocked u
the driver completes the function.

System Controller The single designated Controller that can assert control (become CIC
GPIB) by sending the Interface Clear (IFC) message. Other devices c
become CIC only by having control passed to them.
© National Instruments Corporation G-7 NI-488.2 User Manual for Windows



Glossary

 the 

r, 

ll 
ice 

.

T

TAD Talk Address. See MTA.

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control. The GPIB command used to pass control of the bus from
current Controller to an addressed Talker.

timeout A feature of the GPIB driver that prevents I/O functions from hanging 
indefinitely when there is a problem on the GPIB.

TLC An integrated circuit that implements most of the GPIB Talker, Listene
and Controller functions in hardware.

U

ud Unit descriptor. A variable name and first argument of each function ca
that contains the unit descriptor of the GPIB interface or other GPIB dev
that is the object of the function. 

UNL Unlisten. The GPIB command used to unaddress any active Listeners

UNT Untalk. The GPIB command used to unaddress an active Talker.
NI-488.2 User Manual for Windows G-8 © National Instruments Corporation



Index
 

7

 

Numbers/Symbols
! (repeat previous function) function, Interactive 

Control, 6-11
$ filename (execute indirect file) function, 

Interactive Control, 6-11
+ (turn ON display) function, Interactive 

Control, 6-11
- (turn OFF display) function, Interactive 

Control, 6-11

A
active Controller. See Controller-in-Charge 

(CIC).
addresses. See GPIB addresses.
AllSpoll routine

description, 7-15
SRQ and serial polling (example), 7-16

application development. See also debugging; 
NI-488.2 API.

accessing NI-488.2 driver, 3-3 to 3-4
choosing a method, 3-3 to 3-4
direct entry access, 3-4
NI-488.2 language interfaces, 3-4

checking status with global 
variables, 3-6 to 3-8

count variables (ibcnt and ibcntl), 3-8
error variable (iberr), 3-7 to 3-8
status word (ibsta), 3-6 to 3-7

communicating with single GPIB 
device, 3-8 to 3-10

clearing devices, 3-10
device communication, 3-10
general steps and examples, 3-9 to 3-10
items to include, 3-8 to 3-9
opening devices, 3-9 to 3-10
placing device offline, 3-10

instrument control
interactive, 3-3
simple, using NI-488.2 Communicator,

3-1 to 3-3
Interactive Control for communicating with 

devices, 3-8
language-specific instructions, 3-13 to 3-1

Borland C/C++, 3-13
direct entry with C, 3-14 to 3-17

directly accessing gpib-32.dll 
exports, 3-15 to 3-17

gpib-32.dll exports, 3-14 to 3-15
Microsoft Visual Basic, 3-13 to 3-14
Microsoft Visual C/C++, 3-13

multiple interfaces or multiple GPIB 
devices

becoming Controller-In-Charge, 3-11
communicating with devices, 3-12
determining GPIB address of device, 

3-11 to 3-12
general steps and examples, 

3-11 to 3-13
initialization, 3-11 to 3-12
initializing devices, 3-12
items to include, 3-10 to 3-11
placing device offline, 3-13

NI-488.2 API, 3-4 to 3-5
communicating with one GPIB device,

3-4 to 3-5
low-level functions, 3-5
multiple interfaces and/or multiple 

devices, 3-5
overview, 3-4

applications, existing. See existing applications.
asynchronous event notification in Win32 

applications, 7-4 to 7-9
calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 7-5 to 7-9
© National Instruments Corporation I-1 NI-488.2 User Manual for Windows



Index

, 
ATN (attention) line (table), A-3
ATN status word condition

bit position, hex value, and type 
(table), 3-7

description, B-4
automatic serial polling. See serial polling.
auxiliary functions, Interactive Control 

(table), 6-11

B
Borland C/C++, 3-13
buffer option function, Interactive 

Control, 6-11

C
C language direct entry for application 

development, 3-14 to 3-17
directly accessing gpib-32.dll exports, 

3-15 to 3-17
gpib-32.dll exports, 3-14 to 3-15

cable length for high-speed data transfers, 7-2, 
7-3

CIC. See Controller-in-Charge (CIC).
CIC status word condition

bit position, hex value, and type 
(table), 3-7

description, B-4
CMPL status word condition

bit position, hex value, and type 
(table), 3-7

description, B-3
common questions. See troubleshooting and 

common questions.
communicating with GPIB devices

advanced communication, 2-9
instrument commands, 2-10
multiple GPIB devices, 3-10 to 3-13

becoming Controller-In-Charge, 
3-11

communicating with devices, 3-12

determining GPIB address of device
3-11 to 3-12

general steps and examples, 
3-11 to 3-13

initialization, 3-11 to 3-12
initializing devices, 3-12
items to include, 3-10 to 3-11
placing device offline, 3-13
programming considerations, 3-5

query/read/write communication, 
2-7 to 2-9

single GPIB device, 3-8 to 3-10
clearing devices, 3-10
device communication, 3-10
general steps and examples, 

3-9 to 3-10
items to include, 3-8 to 3-9
opening devices, 3-9 to 3-10
placing device offline, 3-10
programming considerations, 

3-4 to 3-5
using NI-488.2 Communicator, 

2-7 to 2-10
communication errors, 4-5

repeat addressing, 4-5
termination method, 4-5

configuration, 1-1 to 1-3. See also Interactive 
Control utility.

errors in configuration, 4-4
linear and star system configuration 

(figure), 1-1
requirements, 1-2 to 1-3
system configuration effects on 

HS488, 7-3
viewing or changing GPIB interface 

settings, 2-14 to 2-16
Windows 98/95, 2-14 to 2-15
Windows NT, 2-15 to 2-16

Configure (CFGn) message, 7-3
Configure Enable (CFE) message, 7-3
NI-488.2 User Manual for Windows I-2 © National Instruments Corporation



Index

1

Controller-in-Charge (CIC)
active Controller as CIC, A-1
becoming Controller-In-Charge 

(example), 3-11
making GPIB board CIC, 7-11
System Controller as, A-1

Controllers
definition, A-1
idle Controller, A-1
monitoring by Talker/Listener 

applications, 7-11 to 7-12
System Controller, A-1

count information, in Interactive Control, 6-12
count variables (ibcnt and ibcntl), 3-8

D
data lines, A-2
data transfers

high-speed (HS488), 7-2 to 7-3
enabling, 7-2 to 7-3
system configuration effects, 7-3

terminating, 7-1 to 7-2
DAV (data valid) line (table), A-3
DCAS status word condition

bit position, hex value, and type 
(table), 3-7

description, B-5
Talker/Listener applications, 7-12

debugging. See also NI Spy utility; 
troubleshooting and common questions.

communication errors, 4-5
repeat addressing, 4-5
termination method, 4-5

configuration errors, 4-4
existing applications, 4-3
global status variables, 4-2 to 4-3
GPIB error codes (table), C-1
NI Spy, 4-1 to 4-2

NI-488.2 error codes, 4-3
other errors, 4-6
timing errors, 4-4

DevClearList routine (example), 3-12
Device Manager device status codes, 

troubleshooting, D-2 to D-3
device-level calls and bus management, 7-1
direct access to NI-488.2 dynamic link 

library, 3-4
documentation

conventions used in manual, xii
overview of NI-488.2 documentation, xi
related documentation, xii

DOS NI-488.2 applications
enabling/disabling support

under Windows 98/95, 2-18
under Windows NT, 2-19

running
under Windows 98/95, 3-17 to 3-18
under Windows NT, 3-18

DTAS status word condition
bit position, hex value, and type 

(table), 3-7
description, B-5
Talker/Listener applications, 7-12

E
EABO error code, C-5
EADR error code, C-4
EARG error code, C-4
EBUS error code, C-7 to C-8
ECAP error code, C-7
ECIC error code, C-2 to C-3
EDMA error code, C-6
EDVR error code

description, C-2
troubleshooting, D-1 to D-2

EFSO error code, C-7
e-mail support, F-1
© National Instruments Corporation I-3 NI-488.2 User Manual for Windows



Index
END status word condition
bit position, hex value, and type 

(table), 3-6
description, B-2

end-of-string character. See EOS.
ENEB error code, C-5 to C-6
ENOL error code, C-3
EOI (end or identify) line

purpose (table), A-3
termination of data transfers, 7-1

EOIP error code, C-6 to 6-7
EOS

configuring EOS mode, 7-1 to 7-2
EOS comparison method, 7-1
EOS read method, 7-2
EOS write method, 7-1 to 7-2

ERR status word condition
bit position, hex value, and type 

(table), 3-6
description, B-2

error codes and solutions
debugging applications, 4-3
EABO, C-5
EADR, C-4
EARG, C-4
EBUS, C-7 to C-8
ECAP, C-7
ECIC, C-2 to C-3
EDMA, C-6
EDVR, C-2
EFSO, C-7
ENEB, C-5 to C-6
ENOL, C-3
EOIP, C-6 to 6-7
ESAC, C-5
ESRQ, C-8 to C-9
ESTB, C-8
ETAB, C-9
GPIB error codes (table), C-1

error conditions
communication errors, 4-5

repeat addressing, 4-5
termination method, 4-5

configuration errors, 4-4
Interactive Control error information, 

6-12
timing errors, 4-4

error variable (iberr), 3-7 to 3-8
ESAC error code, C-5
ESRQ error code, C-8 to C-9
ESTB error code, C-8
ETAB error code, C-9
event notification. See asynchronous event 

notification in Win32 applications.
Event Status bit (ESB), 7-12
execute function n times (n *) function, 

Interactive Control, 6-11
execute indirect file ($) function, Interactive 

Control, 6-11
execute previous function n times (n * !) 

function, Interactive Control, 6-11
existing applications

debugging, 4-3
running under Windows 98/95

DOS NI-488.2 applications, 
3-17 to 3-18

Win16 NI-488.2 applications, 3-17
running under Windows NT, 3-18

F
fax and telephone support, F-2
Fax-on-Demand support, F-1
FindLstn routine

determining GPIB address (example), 
3-11 to 3-12

using in Interactive Control 
(example), 6-3
NI-488.2 User Manual for Windows I-4 © National Instruments Corporation



Index

 

FindRQS routine
description, 7-15
SRQ and serial polling (example), 

7-15 to 7-16
FTP support, F-1
functions. See NI-488.2 API.

G
General Purpose Interface Bus. See GPIB.
Getting Started Wizard, 2-3 to 2-4
global variables, 3-6 to 3-8

count variables (ibcnt and ibcntl), 3-8
debugging applications, 4-2 to 4-3
error variable (iberr), 3-7 to 3-8
status word (ibsta), 3-6 to 3-7
writing multithreaded Win32 NI-488.2 

applications, 7-9 to 7-10
GPIB

configuration, 1-1 to 1-3
controlling more than one 

interface, 1-2
linear and star system configuration 

(figure), 1-1
requirements, 1-2 to 1-3

definition, A-1
overview, A-1
resources on National Instruments GPIB 

Web site, 2-19
sending messages across, A-2 to A-3

data lines, A-2
handshake lines, A-3
interface management lines, A-3

Talkers, Listeners, and Controllers, A-1
viewing or changing interface settings, 

2-14 to 2-16
Windows 98/95, 2-14 to 2-15
Windows NT, 2-15 to 2-16

GPIB addresses
address bit configuration (figure), A-2
listen address, A-2

primary, A-2
purpose, A-2
repeat addressing, 4-5
secondary, A-2
syntax in Interactive Control, 6-6
talk address, A-2

GPIB instruments
adding new, 2-10 to 2-11
changing device templates, 2-17 to 2-18

Windows 98/95, 2-18
Windows NT, 2-18

communicating with. See communicating 
with GPIB devices.

multiple. See multiple interfaces or 
multiple GPIB devices.

scanning for, 2-6 to 2-7
viewing information, 2-16 to 2-17

gpib-32.dll exports
accessing directly, 3-15 to 3-17
direct entry with C, 3-14 to 3-15

GPIB-ENET network settings (Windows 
98/95)

assigning IP address, 2-20
configuring advanced IP settings, 2-20
updating GPIB-ENET firmware, 2-20

H
handshake lines, A-3
help

accessing additional help resources
National Instruments GPIB Web site,

2-19
NI-488.2 online help, 2-19

NI Spy help, 5-3
help (display Interactive utility online help) 

function (table), 6-11
help option function, Interactive utility, 6-11
© National Instruments Corporation I-5 NI-488.2 User Manual for Windows



Index
HS488 (high-speed data transfers), 7-2 to 7-3
enabling HS488, 7-2 to 7-3
setting cable length, 7-2
system configuration effects, 7-3

HS488 configuration message, 7-3

I
ibask function, 7-3
ibclr function

clearing devices (example), 3-10
using in Interactive Control 

(example), 6-4
ibcnt and ibcntl variables, 3-8
ibconfig function

configuring GPIB board as CIC, 7-2
configuring NI-488.2 driver, 4-4
determining assertion of EOI line, 7-2
enabling autopolling, 7-13
enabling high-speed data transfers, 

7-2 to 7-3
ibdev function

opening devices (example), 3-9 to 3-10
using in Interactive Control 

(example), 6-3
ibeos function, 7-1
ibeot function, 7-1
iberr error variable, 3-7 to 3-8
ibnotify function

asynchronous event notification in Win32 
applications (example), 7-5 to 7-9

calling, 7-4 to 7-5
ibonl function

placing device offline (example), 3-10, 
3-13

using in Interactive Control (example), 
6-5

ibppc function
conducting parallel polls, 7-17 to 7-18
unconfiguring device for parallel 

polling, 7-18

ibrd function
communicating with device 

(example), 3-10
using in Interactive Control 

(example), 6-4
ibrpp function, 7-18
ibrsp function

automatic serial polling, 7-13
SRQ and serial polling, 7-14

ibsta. See status word (ibsta).
ibwait function

Talker/Listener applications, 7-11
terminating stuck SRQ state, 7-13
waiting for GPIB conditions, 7-4

ibwrt function
communicating with device 

(example), 3-10
using in Interactive Control 

(example), 6-4
IFC (interface clear) line, A-3
Interactive Control utility

advanced GPIB communication, 2-9
auxiliary functions (table), 6-11
communicating with devices, 3-3, 3-8
count information, 6-12
error information, 6-12
getting started, 6-1 to 6-5
NI-488.2 call examples, 6-2 to 6-5
overview, 6-1
programming considerations, 3-8
starting, 3-3
status word, 6-11
syntax, 6-5 to 6-6

addresses, 6-6
board-level calls (table), 6-8 to 6-9
device-level calls (table), 6-7 to 6-8
multi-device NI-488.2 calls (table), 

6-9 to 6-10
numbers, 6-5
strings, 6-6
NI-488.2 User Manual for Windows I-6 © National Instruments Corporation



Index

7

interface management lines, A-3
interrupts and autopolling, 7-13 to 7-14

L
LACS status word condition

bit position, hex value, and type 
(table), 3-7

description, B-5
Talker/Listener applications, 7-11 to 7-12

languages
language-specific instructions, 

3-13 to 3-17
Borland C/C++, 3-13
direct entry with C, 3-14 to 3-17

directly accessing gpib-32.dll 
exports, 3-15 to 3-17

gpib-32.dll exports, 3-14 to 3-15
Microsoft Visual Basic, 3-13 to 3-14
Microsoft Visual C/C++, 3-13

NI-488.2 language interfaces, 3-4
listen address, setting, A-2
Listeners, A-1. See also Talker/Listener 

applications.
LOK status word condition

bit position, hex value, and type 
(table), 3-7

description, B-3

M
manual. See documentation.
Measurement & Automation Explorer, 

2-1 to 2-20
accessing help and resources

National Instruments GPIB Web site, 
2-19

NI-488.2 online help, 2-19
adding new GPIB instruments, 

2-10 to 2-11

changing GPIB device templates, 
2-17 to 2-18

Windows 98/95, 2-18
Windows NT, 2-18

communicating with GPIB instruments, 
2-7 to 2-10

advanced communication, 2-9
instrument commands, 2-10
query/read/write communication, 

2-7 to 2-9
enabling/disabling NI-488.2 DOS 

support, 2-18 to 2-19
Windows 98/95, 2-18
Windows NT, 2-19

getting started with NI-488.2, 2-3 to 2-4
GPIB-ENET network settings (Windows 

98/95)
assigning IP address, 2-20
configuring advanced IP 

settings, 2-20
updating GPIB-ENET firmware, 

2-20
monitoring, recording, and displaying 

NI-488.2 calls, 2-13
overview, 2-1
scanning for GPIB instruments, 2-6 to 2-
starting, 2-2
troubleshooting NI-488.2 problems, 

2-4 to 2-5
viewing GPIB instrument information, 

2-16 to 2-17
viewing NI-488.2 software version, 2-12
viewing or changing GPIB interface 

settings, 2-14 to 2-16
Windows 98/95, 2-14 to 2-15
Windows NT, 2-15 to 2-16

Message Available (MAV) bit, 7-12
messages, sending across GPIB, A-2 to A-3

data lines, A-2
handshake lines, A-3
© National Instruments Corporation I-7 NI-488.2 User Manual for Windows



Index

 

 

interface management lines, A-3
Microsoft Visual Basic, 3-13 to 3-14
Microsoft Visual C/C++ programming 

instructions, 3-13
multiple interfaces or multiple GPIB devices

becoming Controller-In-Charge, 3-11
communicating with devices, 3-12
determining GPIB address of device, 

3-11 to 3-12
general steps and examples, 3-11 to 3-13
initialization, 3-11 to 3-12
initializing devices, 3-12
items to include, 3-10 to 3-11
placing device offline, 3-13

multithreaded Win32 NI-488.2 applications, 
writing, 7-9 to 7-10

N
n * ! (execute previous function n times) 

function, Interactive Control, 6-11
n * (execute function n times) function, 

Interactive Control, 6-11
NDAC (not data accepted) line (table), A-3
NI Spy utility

debugging applications, 4-1 to 4-2
existing applications, 4-3
using global status variables, 

4-2 to 4-3
exiting, 5-4
locating errors, 5-3
main window (figure), 5-3
online help, 5-3
overview, 5-1
performance considerations, 5-4
starting, 4-1 to 4-2, 5-1 to 5-2
viewing properties for recorded calls, 5-3

NI-488.2 API. See also application 
development; debugging.

asynchronous event notification in Win32
applications, 7-4 to 7-9

calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 

7-5 to 7-9
communicating with one GPIB device, 

3-4 to 3-5
device-level calls and bus management,

7-11
getting started with NI-488.2, 2-3 to 2-4
high-speed data transfers, 7-2 to 7-3

enabling HS488, 7-2 to 7-3
system configuration effects, 7-3

Interactive Control syntax, 6-5 to 6-11
board-level traditional NI-488.2 calls 

(table), 6-8 to 6-9
device-level traditional NI-488.2 

calls (table), 6-7 to 6-8
examples, 6-2 to 6-5
multi-device NI-488.2 calls (table), 

6-9 to 6-10
language interfaces, 3-4
low-level functions, 3-5
monitoring, recording, and displaying 

calls, 2-13
multiple interfaces and/or multiple 

devices, 3-5
overview, 3-4
parallel polling, 7-17 to 7-19

implementing, 7-17 to 7-19
using multi-device NI-488.2 calls, 

7-19
using traditional NI-488.2 calls, 

7-17 to 7-18
serial polling, 7-12 to 7-16

automatic serial polling, 7-13 to 7-14
autopolling and interrupts, 

7-13 to 7-14
stuck SRQ state, 7-13
NI-488.2 User Manual for Windows I-8 © National Instruments Corporation



Index
service requests
from IEEE 488 devices, 7-12
from IEEE 488.2 devices, 7-12

SRQ and serial polling
AllSpoll (example), 7-16
with device-level traditional 

NI-488.2 calls, 7-14
FindRQS (example), 

7-15 to 7-16
with multi-device NI-488.2 

calls, 7-15 to 7-16
Talker/Listener applications, 7-11 to 7-12
termination of data transfers, 7-1 to 7-2
troubleshooting. See troubleshooting and 

common questions.
viewing software version, 2-12
waiting for GPIB conditions, 7-4
writing multithreaded Win32 NI-488.2 

applications, 7-9 to 7-10
NI-488.2 Communicator

query/read/write communication, 
2-7 to 2-9

simple instrument control, 3-1 to 3-3
NI-488.2 driver

choosing access method, 3-3 to 3-4
direct entry access, 3-4

NRFD (not ready for data) line (table), A-3
number syntax, in Interactive Control, 6-5

O
online help for NI Spy, 5-3

P
parallel polling, 7-17 to 7-19

implementing, 7-17 to 7-19
using multi-device NI-488.2 calls, 7-19
using traditional NI-488.2 calls, 

7-17 to 7-18

PPoll routine, 7-19
PPollConfig routine, 7-19
PPollUnconfig routine, 7-19
primary GPIB address, A-2
problem solving. See debugging; 

troubleshooting and common questions.
programming. See application development; 

debugging; NI-488.2 API.

Q
q function, Interactive Control, 6-11

R
ReadStatusByte routine, 7-15
Receive routine (example), 3-12
REM status word condition

bit position, hex value, and type 
(table), 3-7

description, B-4
REN (remote enable) line (table), A-3
repeat addressing, 4-5
repeat previous function (!) function, 

Interactive Control, 6-11
RQS status word condition

bit position, hex value, and type 
(table), 3-7

description, B-3
running existing applications. See existing 

applications.

S
scanning for GPIB instruments, 2-6 to 2-7
secondary GPIB address, A-2
SendIFC routine

becoming Controller-in-Charge 
(example), 3-11

using in Interactive Control 
(example), 6-3
© National Instruments Corporation I-9 NI-488.2 User Manual for Windows



Index

, 
SendList routine (example), 3-12
serial polling, 7-12 to 7-16

automatic serial polling, 7-13 to 7-14
autopolling and interrupts, 

7-13 to 7-14
stuck SRQ state, 7-13

service requests
from IEEE 488 devices, 7-12
from IEEE 488.2 devices, 7-12

SRQ and serial polling
with device-level traditional 

NI-488.2 calls, 7-14
with multi-device NI-488.2 calls, 

7-15 to 7-16
set 488.2 v function, Interactive Control 

utility, 6-11
set udname function, Interactive Control 

utility, 6-11
setting up your system. See configuration.
single GPIB device, communicating with. 

Seecommunicating with GPIB devices.
SRQ (service request) line

automatic serial polling, 7-13 to 7-14
purpose (table), A-3
stuck SRQ state, 7-13

SRQI status word condition
bit position, hex value, and type 

(table), 3-7
description, B-3

status word (ibsta), 3-6 to 3-7
ATN, B-4
CIC, B-4
CMPL, B-3
DCAS, 7-12, B-5
DTAS, 7-12, B-5
END, B-2
ERR, B-2
Interactive Control example, 6-11
LACS, 7-12, B-5
LOK, B-3
programming considerations, 3-6 to 3-7

REM, B-4
RQS, B-3
SRQI, B-3
status word layout (table), 3-6 to 3-7, B-1
TACS, 7-12, B-4
TIMO, B-2

string syntax, in Interactive Control, 6-6
stuck SRQ state, 7-13
System Controller as Controller-in-Charge, 

A-1

T
TACS status word condition

bit position, hex value, and type 
(table), 3-7

description, B-4
Talker/Listener applications, 7-12

talk address, setting, A-2
Talker/Listener applications, 7-11 to 7-12
Talkers, A-1
technical support resources, F-1 to F-2
telephone and fax support, F-2
termination methods, errors caused by, 4-5
termination of data transfers, 7-1 to 7-2
TestSRQ routine, 7-15
timing errors, 4-4
TIMO status word condition

bit position, hex value, and type 
(table), 3-6

description, B-2
troubleshooting and common questions. See 

also debugging; Interactive Control utility; 
NI Spy utility.

NI-488.2 problems, using 
Troubleshooting Wizard, 2-4 to 2-5

Windows 98/95, D-1 to D-6
common questions, D-3 to D-6
Device Manager device status code

D-2 to D-3
EDVR error conditions, D-1 to D-2
NI-488.2 User Manual for Windows I-10 © National Instruments Corporation



Index

t
Windows NT, E-1 to E-4
common questions, E-2 to E-4
examining NT system log using 

Event Viewer, E-2
using diagnostic tools, E-1 to E-2
verifying NI-488.2 installation, 

E-1 to E-2
turn OFF display (-) function, Interactive 

Control, 6-11
turn ON display (+) function, Interactive 

Control, 6-11

V
Visual Basic, 3-13 to 3-14
Visual C/C++ programming instructions, 3-13

W
wait function. See ibwait function.
WaitSRQ routine, 7-15
Web site support, F-1
Windows environment

asynchronous event notification in Win32 
applications, 7-4 to 7-9

calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 

7-5 to 7-9
changing GPIB device templates

Windows 98/95, 2-18
Windows NT, 2-18

enabling/disabling NI-488.2 DOS suppor
Windows 98/95, 2-18
Windows NT, 2-19

GPIB-ENET network settings (Windows 
98/95), 2-20

running Win16 NI-488.2 applications
under Windows 98/95, 3-17

running Win32 applications, 3-17 to 3-18
troubleshooting and common questions

Windows 98/95, D-1 to D-6
common questions, D-3 to D-6
Device Manager device status 

code, D-2 to D-3
EDVR error conditions, 

D-1 to D-2
Windows NT, E-1 to E-4

common questions, E-2 to E-4
examining NT system log using 

Event Viewer, E-2
using diagnostic tools, 

E-1 to E-2
verifying NI-488.2 installation, 

E-1 to E-2
viewing or changing GPIB interface 

settings
Windows 98/95, 2-14 to 2-15
Windows NT, 2-15 to 2-16
© National Instruments Corporation I-11 NI-488.2 User Manual for Windows


	NI-488.2 User Manual for Windows
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Overview of the NI-488.2 Documentation
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Setting up and Configuring Your System
	Controlling More Than One Interface
	Configuration Requirements


	Chapter 2 Measurement & Automation Explorer
	Overview
	Starting Measurement & Automation Explorer
	Getting Started with NI-488.2
	Troubleshoot NI-488.2 Problems
	Scan for GPIB Instruments
	Communicate with a GPIB Instrument
	Query/Read/Write Communication
	Advanced Communication
	About Instrument Communication

	Adding a New GPIB Instrument
	View NI-488.2 Software Version
	Monitor, Record, and Display NI-488.2 Calls
	View or Change GPIB Interface Settings
	Under Windows�98/95
	Under Windows�NT

	View GPIB Instrument Information
	Change GPIB Device Templates
	Under Windows�98/95
	Under Windows�NT

	Enable/Disable NI-488.2 DOS Support
	Under Windows�98/95
	Under Windows�NT

	Access Additional Help and Resources for NI-488.2 and�GPIB
	NI-488.2 Online Help
	National Instruments GPIB Web Site

	GPIB-ENET Network Settings (Windows�98/95 Only)
	Assign IP Address
	Configure Advanced IP Settings
	Update GPIB-ENET Firmware


	Chapter 3 Developing Your NI-488.2 Application
	Simple Instrument Control
	Interactive Instrument Control
	Choosing Your Programming Methodology
	Choosing a Method to Access the NI-488.2 Driver
	NI-488.2 Language Interfaces
	Direct Entry Access

	Choosing How to Use the NI-488.2 API
	Communicating with a Single GPIB Device
	Using Multiple Interfaces and/or Multiple Devices


	Checking Status with Global Variables
	Status Word (ibsta)
	Error Variable (iberr)
	Count Variables (ibcnt and ibcntl)

	Using Interactive Control to Communicate with�Devices
	Programming Models
	Applications That Communicate with a Single GPIB Device
	Items to Include
	General Program Steps and Examples

	Applications That Use Multiple Interfaces or Communicate with Multiple�GPIB Devices
	Items to Include
	General Program Steps and Examples


	Language-Specific Programming Instructions
	Microsoft Visual C/C++ (Version 2.0 or Later)
	Borland C/C++ (Version 4.0 or Later)
	Visual Basic (Version 4.0 or Later)
	Direct Entry with C
	gpib-32.dll Exports
	Directly Accessing the gpib-32.dll Exports


	Running Existing NI-488.2 Applications
	Running Existing Win32 and Win16 NI-488.2 Applications
	Running Existing DOS NI-488.2 Applications Under Windows�98/95
	Running Existing DOS NI-488.2 Applications under Windows�NT


	Chapter 4 Debugging Your Application
	NI Spy
	Global Status Variables
	Existing Applications
	NI-488.2 Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Other Errors

	Chapter 5 NI Spy Utility
	Overview
	Starting NI Spy
	Using the NI Spy Online Help
	Locating Errors with NI Spy
	Viewing Properties for Recorded Calls
	Exiting NI Spy
	Performance Considerations

	Chapter 6 Interactive Control Utility
	Overview
	Getting Started with Interactive Control
	Interactive Control Syntax
	Number Syntax
	String Syntax
	Address Syntax

	Interactive Control Commands
	Status Word
	Error Information
	Count Information

	Chapter 7 NI-488.2 Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488

	Waiting for GPIB Conditions
	Asynchronous Event Notification in Win32 NI-488.2�Applications
	Calling the ibnotify Function
	ibnotify Programming Example

	Writing Multithreaded Win32 NI-488.2 Applications
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts

	SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls
	SRQ and Serial Polling with Multi-Device NI-488.2 Calls
	Example 1: Using FindRQS
	Example 2: Using AllSpoll


	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with Traditional NI-488.2 Calls
	Parallel Polling with Multi-Device NI-488.2 Calls



	Appendix A GPIB Basics
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines


	Appendix B Status Word Conditions
	ERR (dev, brd)
	TIMO (dev, brd)
	END (dev, brd)
	SRQI (brd)
	RQS (dev)
	CMPL (dev, brd)
	LOK (brd)
	REM (brd)
	CIC (brd)
	ATN (brd)
	TACS (brd)
	LACS (brd)
	DTAS (brd)
	DCAS (brd)

	Appendix C Error Codes and Solutions
	EDVR (0)
	Solutions

	ECIC (1)
	Solutions

	ENOL (2)
	Solutions

	EADR (3)
	Solutions

	EARG (4)
	Solutions

	ESAC (5)
	Solutions

	EABO (6)
	Solutions

	ENEB (7)
	Solutions

	EDMA (8)
	Solutions

	EOIP (10)
	Solutions

	ECAP (11)
	Solutions

	EFSO (12)
	Solutions

	EBUS (14)
	Solutions

	ESTB (15)
	Solutions

	ESRQ (16)
	Solutions

	ETAB (20)
	Solutions


	Appendix D Windows 98/95: Troubleshooting and Common Questions
	Troubleshooting EDVR Error Conditions
	EDVR Error Condition with ibcntl Set to 0xE028002C (–534249428)
	EDVR Error Condition with ibcntl Set to 0xE0140025 (–535560155)
	EDVR Error Condition with ibcntl Set to 0xE0140035 (–535560139)
	EDVR Error Condition with ibcntl Set to 0xE0320029 (–533594071) or 0xE1050029 (–519765975)
	EDVR Error Condition with ibcntl Set to 0xE0140004 (–535560188)
	EDVR Error Condition with ibcntl set to 0xE1030043 (–519897021)

	Troubleshooting Device Manager Problems
	Common Questions

	Appendix E Windows NT: Troubleshooting and Common Questions
	Using Windows NT Diagnostic Tools
	Examining NT Devices to Verify the Installation
	Examining the NT System Log Using the Event Viewer

	Common Questions

	Appendix F Technical Support Resources
	Web Site
	FTP Site
	Fax-on-Demand Support
	E-Mail Support
	Telephone and Fax Support

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U

	Index
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	Figures
	Figure 1-1. Linear and Star System Configuration
	Figure 1-2. Example of Multiboard System Configuration
	Figure 2-1. Measurement & Automation Explorer
	Figure 2-2. Select View Documentation
	Figure 2-3. Select Getting Started Wizard
	Figure 2-4. Select NI-488.2 Troubleshooting Wizard
	Figure 2-5. NI-488.2 Troubleshooting Wizard
	Figure 2-6. Select Scan for Instruments
	Figure 2-7. Select Communicate with Instrument
	Figure 2-8. NI-488.2 Communicator
	Figure 2-9. Select Interactive Control Utility
	Figure 2-10. Scan for New Instrument After Scanning
	Figure 2-11. Select About Measurement & Automation Explorer
	Figure 2-12. Select NI Spy
	Figure 2-13. Select Properties
	Figure 2-14. View Interface Information under Windows 98/95
	Figure 2-15. View Interface Information under Windows NT
	Figure 2-16. GPIB Instrument Information
	Figure 3-1. Select Communicate with Instrument
	Figure 3-2. NI-488.2 Communicator
	Figure 4-1. Select NI Spy
	Figure 5-1. Select NI Spy
	Figure 5-2. NI Spy Application
	Figure 6-1. Select Interactive Control Utility
	Figure A-1. GPIB Address Bits

	Tables
	Table 3-1. Status Word Layout (Continued)
	Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control (Continued)
	Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control (Continued)
	Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control (Continued)
	Table 6-4. Auxiliary Functions in Interactive Control 
	Table A-1. GPIB Handshake Lines
	Table A-2. GPIB Interface Management Lines 


